OPT2019: 11th Annual Workshop on Optimization for Machine Learning

Accelerating boosting via accelerated greedy coordinate descent

Xiaomeng Ju * XIAOMENG.JU @ STAT.UBC.CA
University of British Columbia

Yifan Sun * YIFAN.Q.SUN @ GMAIL.COM
INRIA-Paris

Sharan Vaswani * VASWANIS @ MILA.QUEBEC

Mila, Université de Montréal

Mark Schmidt SCHMIDTM @ CS.UBC.CA
University of British Columbia

Abstract

We exploit the connection between boosting and greedy coordinate optimization to produce new accelerated
boosting methods. Specifically, we look at increasing block sizes, better selection rules, and momentum-
type acceleration. Numerical results show training convergence gains over several data sets. The code is
made publicly available.

1. Introduction

Boosting [26] is a technique for sequentially building complex machine learning models as a linear combi-
nation of weak learners. Specifically, at each iteration, a weak learner is trained on a proxy loss function
over data that is constantly reweighted to emphasize badly fitted training samples. Despite its simplicity,
the success of boosting methods on tabular data [6] makes it a ubiquitous and highly relevant tool in data
science.

When run for a long time, boosting methods suffer computational costs from fitting and retaining a
large number of weak learners. This motivates accelerating the convergence of simple boosting methods.
Traditionally, such techniques included subsampling data or features randomly [9, 13] or greedily [5], or
improving the weak learners [6, 14].

Another avenue is to exploit the close connection between boosting and greedy coordinate descent
(GCD) methods. In particular, it has previously been observed that Adaboost [11] is equivalent to co-
ordinate minimization under the Gauss-Southwell rule [17, 19, 25], and LogitBoost [10] is inspired by a
greedy selection rule of a Taylor approximation of the loss function. Similar observations have also been
made about gradient boosted machines [12, 20]. This has inspired the development of several “acceler-
ated” boosting schemes, such as MultiBoost [16], GradBoost [8], LPBoost [7], and Accelerated Gradient
Boosting (AGB) [2].

This work explores the practical impact of GCD-inspired acceleration techniques on a generalized boost-
ing framework. The exact connection is reviewed in Section 2, and acceleration is presented in 3 and demon-
strated numerically in 4. Although more work is required to show theoretical speedup, in practice we often
observe faster training error convergence.

2. Boosting and Gauss Southwell coordinate minimization

Consider the empirical risk minimization problem for binary classification

* Equal Contribution
Code is made available at https://github.com/xmengju/Accelerated_Boosting

© XJ.*,Y.S.*, S.V.* & M. Schmidt.

Adaboost t = argmax ’Vf(w(t_l))‘t,
t'=1,..,T
LogitBoost t = argmin (Vf(w* D))y + 2(V2f(wt=D))y
t'=1,..,T
Gradient Boosting t = argmin (V fieg (w(t_l)))t/
t'=1,...,T
1 2
where freg(w) = f(w) + gzlzlwt(h(t) (x5))
i=lt=

Table 1: Explicit update rules of boosting schemes, which inspire our coordinate selection rules when in-
creasing block sizes. Proofs are given in Appendix A.

N T
1 - _
minimize — L(yih(xz; subject to h(z) = wih® (z
Jpimize N; (yih(x:)) j (v) Z O ()

where {z; € R% y; € {£1}}¥, are the training data and labels, and £ : R — R is some convex smooth
loss function acting over the sample margin (binary label x soft prediction). Here, H is a class of weak
learners (e.g. linear combinations of decision stumps [12], neural networks [28], or other types of base
functions [4, 27].

Boosting algorithms for classification form the classifier & € span(#) sequentially, where at iteration
t, we first train () to minimize the weighted misclassification error, and then update w; optimally. In
Adaboost, the data weight is exactly the negative gradient of the margin loss for that sample, e.g.

t) 1 N
iw®) = £ Y weh® (@)). £6) = exp(-0). flw) = 3 > filw
=1

t'=1
0 dL(O 90 d ,
T 2 N bt

sample weight d&t) oc misclass. error

(Adaboost, which usually minimizes the exponential loss, has £(6) = exp(—60) = —L'(0), so this weighting
corresponds to multiplicitively punishing each data sample for its current loss.) Therefore,
h®) = argmin dgt)lh(r)4y, = t=argmin %f(w(t)) h®) e H for all t, past or future

7

heM t=1,...,T

0
= t=argmax f(w(t))‘ if H is closed under sign.
t=1,...,T ow;

~
Gauss Southwell selection rule

Similar connections have been observed for LogitBoost and Gradient boosting machines. (See also [3, 25].)
We list a full summary in Table 1 and refer to Appendix A for derivations.

3. Improvements

Block size Block coordinate updates can often offer speedup over their coordinate counterparts. However,
in boosting, increasing to K > 1 introduces several complications. First, the update of the weak learner
weight may not be closed form, as it is in LogitBoost and Adaboost. Second, without retraining weak
learners, there is no guarantee that the new coordinates selected represent the largest gradient magnitude
value in the past and future, as we only have access to the weak learners of the past.

However, in the regime where training weak learners accounts for the bulk of the computational burden,
taking several gradient steps in order to fine tune past weights may be worth it, especially since aggregating
fewer weak learners provides both storage and generalization advantages. MultiBoost [16] employs fast
coordinate descent with a mix of sequential (cyclic) and stochastic (random) coordinate selection rules. In
the extreme case of LPBoost [7] and TotalBoost [29], all past weights are perfectly fitted in each step in a
fully corrective way.

3.1. Coordinate selection rule

It has been previously shown [23] that the coordinate selection rule can also affect convergence rates. In-
spired by the connection of LogitBoost and Adaboost to coordinate-wise Taylor approximations of the loss
function, we explore these modified selection rules as well.

1. Largest gradient magnitude (GMAX). Equivalent to the Gauss-Southwell update rule.

2. Smallest gradient value (GMIN). In practice, if H is not closed under sign, then Adaboost is not
exactly equivalent to the Gauss-Southwell update. We explicitly force this rule to evaluate any perfor-
mance differences with the previous scheme.

3. Smallest second-order Taylor approximation (GHMIN). This scheme is inspired by LogitBoost
and picks the coordinate that minimizes the coordinate-wise Taylor expansion; we extend this to
general loss functions.

4. Random selection. Uniform selection over weights w, forr =1, ...,t — 1.

3.2. Accelerating coordinate descent

Several works present fast boosting methods developed based on accelerated optimization schemes. Con-
jugate gradient boosting (CGBoost) [15] accelerates GBM by performing conjugate gradient descent in the
function space. The works of Mukherjee et al. [21], Biau et al. [1], and Lu et al. [18] incorporate Nesterov’s
acceleration techniques into the design of boosting algorithms. A convergence rate has been proved for
accelerated gradient boosting by [18]. We explore both the impact of Nesterov [22] and Polyak acceleration
[24], as they are most straightforward to implement on general boosting schemes.

4. Experiments

In all experiments, we use decision stumps as weak learners, and use 10 gradient steps at each iteration, with
a Armijo-Wolfe line search to determine the steplength. We use the abbreviations for each update rule given
in the previous section, appended by the block size, e.g. 5-ghmin means that, aside from updating the latest
weight, we update 5 additional weights according to the GHMIN selection rule.

Figs. 1 and 2 compare the different acceleration schemes on random data, and Fig. 3 on several real
datasets. For classification, overall, we found these techniques most effective when using the exponential
loss function; when logistic loss is used, both the training and testing error simply converge better for all
methods, almost equally, suggesting that there is something sub-optimal about the exponential loss function

—— 1 random — 1 gmax —— 1 gmin === 1 ghmin === vanilla
200 ——————— —-~= Srandom —.= 5 gmax —.= Sgmin e 5ghmin —— fotal

train loss
train error
test error

0 50 100 150

—— lrandom —— 1gmax —— 1lgmin --- 1ghmin === vanilla
—— T —-- Srandom —-= 5 gmax —-= S5gmin e 5 ghmin —— total

[~
=
=]

=
)
=]

train loss
._.
[=]
(=]
train error
=}
=
(=]
test error

=

0 s 100 150 200 D S0 100 150 200 0 S0 100 150 200
iteration iteration iteration

Figure 1: Classification on random data. Boosting via exponential (top) and logistic (bottom) loss.

— vanilla 160
100 total
— greedy 140
n 80 —— polyak P
o nesterov =]
£ —— regularized i 120
=] X

100

20

0 5 s 75 100 15 0 25 s 75 100 125
weak learners # weak learners
Figure 2: Acceleration and regularization. Boosting on random data via LAD loss (regression). Except
for vanilla and total, all run with 5-GMAX selection rule. For 12 loss under Nesterov acceleration,
numerical errors caused the method to terminate early.

itself. More consistent improvements are observed in regression problems; however, the accelerated conver-
gence in training error is not always carried out to the test error and improvements in optimization do not
always translate to improvements in generalization.

Fig. 4 compares the average runtime of boosting over 100 iterations across 10 random data trials. It
is hard to compete against the vanilla algorithm, suggesting that this method is more advantageous when
more computationally burdensome weak learners are used. Additionally, while we don’t see much variance
across different update rules, different loss functions have variable runtimes as bad conditioning causes the
line search to slow down.

5. Future work

We believe that finding a scheme that improves performance in test error as much as train error is essential
for practical usage. Additionally, we would like to extend our results to weak learners similar to those
used in XGBoost [6] and LightGBM [14] to improve the performance of state-of-the-art boosting methods.
Finally, we would like to give improved convergence rates under these acceleration schemes.

—— lrandom —— lgmax —— 1agmin === 1 ghmin === anilla

14000 —-- Srandom —-- 5gmax —.= Sgmin . 5 ghmin —— total
13000 4 0.075 A 0075 A
8 £ 0.070 1 E 0070 {
e 12000 4 NS T T v ot
B = D065 T noss |
p=] B &=
110001 0.060 A 0.060 -
10000 T T T 0.055 T 0.055 T T T
50 100 150 200 50 W0 150 200 50 100 150 200
= 1lrandom = lgmax = 1gmin === 1ghmin === vanilla
—-- Srandom —-- 5gmax —.= Sgmin ... 5 ghmin —— total
12000 00275 4 e 0.0300 4 e s ettt
5 000250 4 = 00275 4
2 10000 { E g 2 1....‘.\1
£ < 0.0225 | o 00250 LT
B B ki S
+ B00O b=} &
0.0200 4 0.0225 4
6000 4 0.0200 4
T T T 001?5) T T T T T T
50 100 150 200 o 50 100 150 200 50 100 150 200
iteration iteration iteration

Figure 3: Classification on real data. Boosting via exponential (top) and logistic (bottom) loss.

Runtime {sec)

1

0.8

0.6

\ I

ol 0 O g IIIII
lins |i I

0
b Ttz SRy, N Sy %S Sa, X Sey, Sep,, Sey,, 6
Mo gy, eng, Ty g, My "y, May g Py, My, May

mLAD ml2 mlogit =Exp mExp(F) mExp(S) Yoy

Figure 4: Runtime comparison. Total runtime after 100 iterations, comparing different methods. In the
first four experiments, there are 100 samples and 50 features. In Exp (F), the number of features
is doubled, and in Exp (S), the number of data samples is doubled.

References

[1] Gérard Biau, Benoit Cadre, and Laurent Rouviere. Accelerated gradient boosting. Machine Learning,
pages 1-22, 2018.

[2] Gérard Biau, Benoit Cadre, and Laurent Rouviere. Accelerated gradient boosting. Machine Learning,
108(6):971-992, 2019.

[3] Peter J Bickel, Ya’acov Ritov, and Alon Zakai. Some theory for generalized boosting algorithms.
Journal of Machine Learning Research, 7(May):705-732, 2006.

[4] Peter Biilhlmann and Bin Yu. Boosting with the 1 2 loss: regression and classification. Journal of the
American Statistical Association, 98(462):324-339, 2003.

[5] Roébert Busa-Fekete and Baldazs Kégl. Bandit-aided boosting. In OPT 2009: 2nd NIPS Workshop on
Optimization for Machine Learning, 2009.

[6] Tianqgi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the

22nd acm sigkdd international conference on knowledge discovery and data mining, pages 785-794.
ACM, 2016.

[7] Ayhan Demiriz, Kristin P Bennett, and John Shawe-Taylor. Linear programming boosting via column
generation. Machine Learning, 46(1-3):225-254, 2002.

[8] John Duchi and Yoram Singer. Boosting with structural sparsity. In Proceedings of the 26th Annual
International Conference on Machine Learning, pages 297-304. ACM, 2009.

[9] Gerard Escudero, Lluis Marquez, and German Rigau. Boosting applied to word sense disambiguation.
In European Conference on Machine Learning, pages 129-141. Springer, 2000.

[10] Yoav Freund, Robert E Schapire, et al. Experiments with a new boosting algorithm. In Icml, volume 96,
pages 148-156. Citeseer, 1996.

[11] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic regression: a statistical view
of boosting. The annals of statistics, 28(2):337-407, 2000.

[12] Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of statistics,
pages 1189-1232, 2001.

[13] Jerome H Friedman. Stochastic gradient boosting. Computational statistics & data analysis, 38(4):
367-378, 2002.

[14] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan
Liu. Lightgbm: A highly efficient gradient boosting decision tree. In Advances in Neural Information
Processing Systems, pages 3146-3154, 2017.

[15] Ling Li, Yaser S Abu-Mostafa, and Amrit Pratap. Cgboost: Conjugate gradient in function space.
2003.

[16] Guosheng Lin, Chunhua Shen, Anton van den Hengel, and David Suter. Fast training of effective
multi-class boosting using coordinate descent optimization. In Asian Conference on Computer Vision,
pages 782-795. Springer, 2012.

[17] Francesco Locatello, Anant Raj, Sai Praneeth Karimireddy, Gunnar Rétsch, Bernhard Scholkopf, Se-
bastian Stich, and Martin Jaggi. On matching pursuit and coordinate descent. In International Confer-
ence on Machine Learning, pages 3204-3213, 2018.

[18] Haihao Lu, Sai Praneeth Karimireddy, Natalia Ponomareva, and Vahab Mirrokni. Accelerating gradi-
ent boosting machine. arXiv preprint arXiv:1903.08708, 2019.

[19] Llew Mason, Jonathan Baxter, Peter L Bartlett, and Marcus R Frean. Boosting algorithms as gradient
descent. In Advances in neural information processing systems, pages 512518, 2000.

[20] Ron Meir and Gunnar Ritsch. An introduction to boosting and leveraging. In Advanced lectures on
machine learning, pages 118-183. Springer, 2003.

[21] Indraneel Mukherjee, Kevin Canini, Rafael Frongillo, and Yoram Singer. Parallel boosting with mo-
mentum. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases,
pages 17-32. Springer, 2013.

[22] Yu Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM
Journal on Optimization, 22(2):341-362, 2012.

[23] Julie Nutini, Issam Laradji, and Mark Schmidt. Let’s make block coordinate descent go fast: Faster

greedy rules, message-passing, active-set complexity, and superlinear convergence. arXiv preprint
arXiv:1712.08859, 2017.

[24] Boris T Polyak. Some methods of speeding up the convergence of iteration methods. USSR Computa-
tional Mathematics and Mathematical Physics, 4(5):1-17, 1964.

[25] Gunnar Ritsch, Sebastian Mika, and Manfred K Warmuth. On the convergence of leveraging. In
Advances in Neural Information Processing Systems, pages 487-494, 2002.

[26] Robert E Schapire, Yoav Freund, Peter Bartlett, Wee Sun Lee, et al. Boosting the margin: A new
explanation for the effectiveness of voting methods. The annals of statistics, 26(5):1651-1686, 1998.

[27] Matthias Schmid and Torsten Hothorn. Boosting additive models using component-wise p-splines.
Computational Statistics & Data Analysis, 53(2):298-311, 2008.

[28] Holger Schwenk and Yoshua Bengio. Boosting neural networks. Neural computation, 12(8):1869—
1887, 2000.

[29] Manfred K Warmuth, Jun Liao, and Gunnar Rétsch. Totally corrective boosting algorithms that max-
imize the margin. In Proceedings of the 23rd international conference on Machine learning, pages

1001-1008. ACM, 2006.

	Introduction
	Boosting and Gauss Southwell coordinate minimization
	Improvements
	Coordinate selection rule
	Accelerating coordinate descent

	Experiments
	Future work

