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Abstract
Regularization for optimization is a crucial technique to avoid overfitting in machine learning. In
order to obtain the best performance, we usually train a model by tuning the regularization pa-
rameters. It becomes costly, however, when a single round of training takes significant amount of
time. Very recently, Neu and Rosasco [13] shows that if we run stochastic gradient descent (SGD)
on linear regression problems, then by averaging the SGD iterates properly, we obtain a regular-
ized solution. It left open whether the same phenomenon can be achieved for other optimization
problems and algorithms. In this paper, we establish a complete theory by showing an averaging
scheme that converts the iterates of GD on an arbitrary strongly convex and smooth objective func-
tion to its regularized counterpart with an adjustable regularization parameter. Our method can be
used for accelerated SGD as well. We derive our results by leveraging the power of approximating
the algorithmic path by a continuous differential equation and its discretization. In sum, we ob-
tain regularization for free for a large class of optimization problems and resolve an open question
in [13].

1. Introduction

Regularization for optimization is a key technique for avoiding over-fitting in machine learning and
statistics [6, 11, 18, 19]. The effects of explicit regularization methods, i.e., an extra regularization
term added to the vanilla objective, are well studied, e.g., ridge regression [19], LASSO [18] and
entropy regularization [6]. Despite the great benefits of adopting explicit regularization, it could
cause a huge computational burden to search for the optimal hyper-parameter associated with the
extra regularization term, especially for large-scale machine learning problems [5, 8, 14].

In another line of research, people recognize and utilize the implicit regularization caused by
certain components in machine learning algorithms, e.g., early stopping [1, 21], different optimiza-
tion methods [7, 13, 15, 17], iterate averaging [2, 12]. The regularization effect usually happens
along the process of running the algorithm and/or requires little post-computation. There is a great
deal of evidence indicating that such implicit bias plays a crucial role for the generalization prop-
erty in many modern machine learning models [10, 22, 24]. However such implicit regularization
is often a fixed effect and lacks the ability to be adjusted. To fully utilize such inherent benefits, we
need a thorough understanding about the mechanism of the implicit regularization.
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Among all the efforts spent on understanding and utilizing the implicit regularization, the work
on bridging iterate averaging with explicit regularization [13] is extraordinarily appealing. Con-
cisely, [13] shows that for linear regression, one can achieve the ridge regression (`2-regularization)
effect by simply taking geometrical averaging over the optimization path generated by stochastic
gradient descent (SGD), which costs merely a small amount of computation. More interestingly,
the regularization is “adjustable”, i.e., new regularized solution can be obtained nearly immedi-
ately from the stored SGD path, with little additional computation overhead. It avoids the heavy
computational demand of hyper-parameter tuning, which is a major disadvantage of the explicit
regularization methods.

Nevertheless, [13] only provides a method and its analysis for linear regression optimized by
SGD. Since linear regression itself is a rather restricted optimization objective, a nature question
arises:

Can we obtain “adjustable” implicit regularization for other objective functions and optimiza-
tion methods?

In this work, we answer this question positively from two aspects:

1. We show that for Nestrov’s accelerated stochastic gradient descent (NSGD), the iterate aver-
aged solution can also realize `2-regularization by a modified weighting scheme;

2. Beside linear regression, we extend the analysis in [13] and characterize the regularization
effects of the iterate averaged solution for strongly convex and smooth loss functions.

Our analysis is motivated from continuous approximation based on differential equations. We dis-
cretize the continuous equations and generalize them to algorithms with finite step size. Our results,
in addition to the linear regression result in [13], illustrate the promising application of iterate av-
eraging to obtain regularization for free, thus providing an efficient method for hyper-parameter
tuning with regularization.

2. Preliminaries

Let {(xi, yi) ∈ Rd×1}ni=1 be the training data. Let w ∈ Rd be the parameters to be optimized. For
convenience, in the following discussion we always assume w is initialized to zero, i.e., w0 = 0.
The loss is denoted as L(w) = 1

n

∑n
i=1 `(xi, yi, w), e.g., for linear regression under the square

loss L(w) = 1
2n

∑n
i=1(wTxi − yi)

2. The explicit regularization term is denoted by R(w), e.g.,
for `2-regularization R(w) = 1

2‖w‖
2
2. Typically, a hype-parameter λ is associated with the regular-

ization term to be balanced with the main loss term, hence the regularized loss becomes L̂(w) =
L(w) + λR(w). Given an optimization algorithm, e.g., SGD or NSGD, an optimization path is
generated through running the algorithm. With a little abuse of notations, we use wk to represent
the algorithmic iterate at step k of the unregularized loss L(w), while ŵk for that of the regularized
loss L(ŵ) + λR(ŵ), respectively. Sometimes we write ŵk with a script as ŵk,λ to emphasize its
dependence on λ.

Stochastic gradient descent In the typical setting of SGD, during every iteration, a mini-batch
is randomly sampled, and then parameters update via the gradient of loss estimated by this mini-
batch. For simplicity we assume batch-size is 1 and learning rate is constant. Then for the loss
L(w) = 1

n

∑n
i=1 `(xi, yi, w), with learning rate η > 0, the SGD takes the following update: wk+1 =

wk − η∇`(xk, yk, wk), w0 = 0.
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Similarly, for the regularized loss L(ŵ) + λR(ŵ), with learning rate γ > 0, SGD takes update:
ŵk+1 = ŵk − γ(∇`(xk, yk, ŵk) + λ∇R(ŵk)), ŵ0 = 0.

Nesterov’s accelerated stochastic gradient descent For simplicity we reload the notations used
in SGD. Suppose the loss L(w) = 1

n

∑n
i=1 `(xi, yi, w) is α-strongly convex. Let η be the learning

rate and τ =
1−√ηα
1+
√
ηα , then NSGD [16, 20] takes update: wk+1 = vk − η∇`(xk, yk, vk), vk =

wk + τ(wk − wk−1), w0 = w1 = 0. Thus for linear regression we have,

wk+1 = vk − η(xkx
T
k vk − xkyk), vk = wk + τ(wk − wk−1), w0 = w1 = 0. (1)

Now consider the loss with `2-regularization L̂(ŵ) = L(ŵ) + λ
2‖ŵ‖

2
2, which is then (α + λ)-

strongly convex. Thus let τ̂ =
1−
√
γ(α+λ)

1+
√
γ(α+λ)

and γ be the learning rate, then NSGD for the regularized

loss takes update: ŵk+1 = v̂k−γ
(
∇`(xk, yk, v̂k) + λv̂k

)
, v̂k = ŵk + τ̂(ŵk− ŵk−1), ŵ0 = ŵ1 =

0. Specifically for linear regression with `2-regularization we obtain

ŵk+1 = v̂k − γ
(

(xkx
T
k + λ)v̂k − xkyk

)
, v̂k = ŵk + τ̂(ŵk − ŵk−1), ŵ0 = ŵ1 = 0. (2)

Iterate averaging A weighting scheme pk is defined by a probability distribution associated to
the optimization path, i.e., pk ≥ 0, k ≥ 0,

∑∞
k=0 pk = 1. Its accumulation is denoted as Pk =∑k

i=0 pi, where limk→∞ Pk = 1. Given a weighting scheme pk (or equivalently Pk), the iterate
averaged path is defined as

w̃k =
1

Pk

k∑
i=0

piwi, k ≥ 0. (3)

The properties of various kinds of averaging schemes (for the SGD optimization path) have
been investigated before. E.g., arithmetic average is shown to bring better convergence [2, 12]; tail-
averaging is analyzed in [9]; and [13] discusses geometrically averaging and its regularization bias.
This work is inspired by [13].

3. Main results

Let us start with revisiting the existing results on connecting iterate averaging with explicit regular-
ization. For linear regression with square loss, [13] shows that if taking geometric iterate averaging
over the optimization path of SGD, one can obtain the solution of linear regression regularized by `2-
regularization. In the following, we will generalize their results to 1) NSGD optimization path and
2) strongly convex and smooth losses. Not limited to SGD and linear regression, our results mani-
fest the broader potential of applying iterate averaging in nearly computation-free hyper-parameter
tuning, model selection, and regularizing the model, etc.

Our analysis is motivated from continuous differential equations, which is left in Appendix A,
due to the space limitation. In the following we introduce our results in discrete cases.

3.1. The regularization effect of iterate averaging over NSGD path

We firstly elaborate our results on the regularization effect realized by NSGD with iterate averaging.
Concisely, we show that for linear regression, there exists a certain kind of geometric averaging
schemes, such that iterate averaging over NSGD optimization path could obtain the effect of `2-
regularization.
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Theorem 1 (The regularization bias of iterate averaging over NSGD path) Consider linear re-
gression and `2-regularization. Suppose the loss function is α-strongly convex and β-smooth (β ≥
α > 0). Let the NSGD optimization paths of the unregularized and regularized losses be defined as
in Eq. (1) and Eq. (2) respectively. Let λ, η, γ be such that η = γ

1−λγ , 0 < η < 1
β . If the iterate

averaged solution w̃k in Eq. (3) is achieved with respect to the weighting scheme

Pk = 1− γ

η

(
1−

√
γ(α+ λ)

1−√ηα

)k−1

, k ≥ 0, (4)

then we have

1. For all k ≥ 0,
E[ŵk]− E[w̃k] = (1− Pk) (E[wk]− E[w̃k]). (5)

2. Both E[wk] and E[ŵk] converge. Thus for C =
1−
√
γ(α+λ)

1−√ηα ∈ (0, 1), there exists a constant
K such that for all k > K, ∥∥E[ŵk]− E[w̃k]

∥∥
2
≤ O(Ck). (6)

Hence the limitation of E[w̃k] exists and limk→∞ E[w̃k] = limk→∞ E[ŵk].

The proof is deferred to Appendix C.1.
Theorem 1 answers one of the open questions in [13]: with some modifications on the weighting

scheme, iterate averaging over NSGD path realizes `2-regularization, similar to that over SGD path.
We provide not only the convergence of w̃k to ŵk (Eq. (6)), but also the finite step convergence error
between them (Eq. (5)).

3.2. The regularization effect of iterate averaging for strongly convex and smooth objectives

Now we turn to explore the regularization bias of iterate averaging for more general loss functions,
e.g., strongly convex and smooth ones. Suppose the loss function L(w) = 1

n

∑n
i=1 `(xi, yi, w) is

α-strongly convex and β-smooth, β ≥ α > 0, and lower bounded. For clarity, we focus on gradient
descent (GD) in this part, i.e.,

wk+1 = wk − η∇L(wk), ŵk+1,λ = ŵk,λ − γ(∇L(ŵk,λ) + λŵk,λ), w0 = ŵ0,λ = 0. (7)

Let b = −∇L(w0), w0 = 0. Without loss of generality, let the unique optimal w∗ of L(w) satisfies
w∗ > w0 = 0, entry-wisely. Then we have (see Lemma 5)

αw − b ≤ ∇L(w) ≤ βw − b, w ∈ (0, w∗), (8)

where the “≤” is defined entry-wisely. Let us denote

uk+1 − uk = −η(αuk − a), vk+1 − vk = −η(βvk − a), u0 = v0 = 0, (9)

and ũk = 1
Pk

∑k
i=0 piui, ṽk = 1

Pk

∑k
i=0 pivi, k ≥ 0. One can view that uk and vk control

wk in Eq. (7) from both upper and lower side respectively. With these conventions, we introduce
Theorem 2, which characterizes the regularization effect of iterate averaging over GD paths for
general strongly convex and smooth losses.
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Theorem 2 (The regularization bias of iterate averaging for strongly convex and smooth loss)
Consider α-strongly convex and β-smooth (β ≥ α > 0) loss functions and `2-regularization. Let

the unregularized and regularized GD optimization paths be defined as in Eq. (7). Let λ1, λ2, η, γ
be such that λ1 = 1

γ −
1
η + β − α, λ2 = 1

γ −
1
η + α − β, 1

2β−α < η < 1
β , 0 < γ < 1

β−α+1/η .
If the iterate averaged solution w̃n in Eq. (3) is achieved with respect to the weighting scheme

Pk = 1−
(
γ
η

)k+1
, then we have

1. For all k ≥ 0,

ŵk,λ1 + (1− Pk)(ṽk − vk) ≤ w̃k ≤ ŵk,λ2 + (1− Pk)(ũk − uk), (10)

where the “≤” is defined entry-wisely.

2. uk, ũk, vk, ṽk, ŵk,λ1 , ŵk,λ2 converge. Thus let m = (ŵ∞,λ2 + ŵ∞,λ1)/2, d = (ŵ∞,λ2 −
ŵ∞,λ1)/2, there exist constants C = max{(1− γ(α+ λ1), (1− γ(α+ λ2), γη} ∈ (0, 1) and
K, such that for all k > K we have

‖w̃k −m‖2 ≤‖d‖2 +O(Ck). (11)

The proof is deferred to Appendix C.2.
According to Theorem 2, for strongly convex and smooth functions, the geometrically averaged

GD path w̃k lies around the area between two regularized GD paths, ŵk,λ1 and ŵk,λ2 . Furthermore,
it converges to a cube with diagonal vertices as ŵ∞,λ1 and ŵ∞,λ2 . In this way we predict the
performance of the regularized solution with hyper-parameter between λ2 and λ1. This result can
potentially benefit the process of searching the hyper-parameter associated with `2-regularization.

4. Conclusions

In this work we show that there exists a certain type of weighting scheme such that the iterate
averaged solution can realize `2-regularization, for Nesterov’s accelerated stochastic gradient de-
scent with quadratic loss functions, and gradient descent with strongly convex and smooth objec-
tives. This in particular resolves an open question in [13]. Our results demonstrate the potential of
adopting iterate averaging to obtain regularization for free in a much broader class of optimization
objectives and optimization methods.
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Appendix A. Continuous analysis

A.1. Preliminaries

To motivate our proofs for the theorems in main text, let us first elaborate the continuous cases, then
we will extend our analysis to the discrete circumstances. One may ignore this part and go directly
to Appendix C for the missing proofs in main text, which is self-consistent.

Continuous optimization paths To ease notations and preliminaries, in this section we only dis-
cuss gradient descent (GD) and Nesterov’s accelerated gradient descent (NGD), and their strong
continuous approximation via ordinary differential equations (ODEs).

We consider loss L(w) and `2-regularization, R(w) = 1
2‖w‖

2
2. Let the learning rate η → 0, the

path of L(w) optimized by GD converges to the following ODE [20]

dwt = −∇L(wt) dt. (12)

Similarly the continuous GD optimization path of regularized loss is

dŵt = −[∇L(ŵt) + λŵt] dt. (13)

As for NGD, [16, 20] show if the loss is α-strongly convex, then the NGD optimization path
converges to

w′′t + 2
√
αw′t + L′(wt) = 0. (14)

Since L̂(ŵ) = L(ŵ) + λ
2‖ŵ‖

2
2 is (α + λ)-strongly convex, the NGD path of the regularized loss

satisfies
ŵ′′t + 2

√
α+ λŵ′t + L′(ŵt) + λŵt = 0. (15)

Continuous weighting scheme We define the continuous weighting scheme as

pt ≥ 0, t ≥ 0, Pt =

∫ t

0
p(s) ds, lim

t→∞
Pt = 1. (16)

Lemma 3 Given two continuous dynamic xt, x̂t, t ≥ 0. Let x̃t = 1
Pt

∫ t
0 psxs ds. Suppose

x0 = x̂0 = 0. If the continuous weighting scheme Pt satisfies

dx̂t = (1− Pt) dxt, t ≥ 0, (17)

then we have
Pt(xt − x̃t) = xt − x̂t, t ≥ 0, (18)

and
x̂t − x̃t = (1− Pt)(xt − x̃t), t ≥ 0. (19)

Proof By definition we have for t ≥ 0,

x̃t =
1

Pt

∫ t

0
psxs ds =

1

Pt

[
xsPs|t0 −

∫ t

0
Ps dxs

]
= xt −

1

Pt

∫ t

0
Ps dxs

=xt −
1

Pt

[
xt −

∫ t

0
(1− Ps) dxs

]
= xt −

1

Pt

[
xt −

∫ t

0
dx̂s

]
=xt −

1

Pt
(xt − x̂t).

(20)
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Thus
Pt(xt − x̃t) = xt − x̂t, (21)

and
x̂t − x̃t = xt − Pt(xt − x̃t)− x̃t = (1− Pt)(xt − x̃t). (22)

These conclude our proof.

A.2. Continuous Theorem 1

In this part we study linear regression L(w) = 1
2n

∑n
i=1(wTxi − yi)2 = 1

2w
TΣw − wTa + const

where Σ = 1
n

∑n
i=1 xix

T
i , a = 1

n

∑n
i=1 xiyi, and `2-regularization R(w) = 1

2‖w‖
2
2 and continuous

NGD paths. Assume the initial condition w0 = w′0 = 0 and ŵ0 = ŵ′0 = 0. According to Eq. (14)
and Eq. (15) the unregularized and regularized NGD dynamics are

w′′t + 2
√
αw′t + Σwt − a = 0, w0 = w′0 = 0, (23)

and
ŵ′′t + 2

√
α+ λŵ′t + (Σ + λ)ŵt − a = 0, ŵ0 = ŵ′0 = 0. (24)

We first solve the order-2 ODE Eq. (23) in the canonical way, and then obtain the solution of
Eq. (24) similarly. To do so, let’s firstly ignore the constant term and solve the homogenous ODE
of Eq. (23), and obtain two general solutions of the homogenous equation as

wt,1 = e
√
αt cos

√
Σ− αt, wt,2 = e

√
αt sin

√
Σ− αt. (25)

Then we guess a particular solution of Eq. (23) as wt,0 = a
Σ . Thus the general solution of ODE (23)

can be decomposed as wt = λ1wt,1 + λ2wt,2 + wt,0. Consider the initial conditions w0 = w′0 = 0,

we obtain λ1 = − a
Σ , λ2 = − a

Σ

√
α

Σ−α . Thus the solution of Eq. (23) is

wt =
a

Σ

[
1− e−

√
αt cos

√
Σ− αt−

√
α

Σ− α
e−
√
αt sin

√
Σ− αt

]
,

w′t =
a√

Σ− α
e−
√
αt sin

√
Σ− αt.

(26)

Repeat these procedures, Eq. (26) is solved by

ŵt =
a

Σ + λ

[
1− e−

√
α+λt cos

√
Σ− αt−

√
α+ λ

Σ− α
e−
√
α+λt sin

√
Σ− αt

]
,

ŵ′t =
a√

Σ− α
e−
√
α+λt sin

√
Σ− αt.

(27)

Now let the continuous weighting scheme be

Pt = 1− e−(
√
α+λ−

√
λ)t, (28)

then we have
dŵt = (1− Pt) dwt, (29)

thus by Lemma 3 we obtain
ŵt − w̃t = (1− Pt)(wt − w̃t), (30)

which is the continuous version of the equality in Theorem 1.
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A.3. Continuous Theorem 2

Now let’s consider α-strongly convex and β-smooth loss function L(w), and `2-regularization. First
adopting the assumption in Theorem 2, i.e., w∗ > w0 = 0, and by Lemma 5 we have

αw − b ≤ ∇L(w) ≤ βw − b, w ∈ (0, w∗), (31)

where w0 = 0, b = −∇L(0), and “≤” is defined entry-wisely. We study the continuous optimiza-
tion paths caused by GD.

Consider the following three dynamics:

dwt = −∇L(wt) dt, dut = −(αut−b) dt, dvt = −(βvt−b) dt, w0 = u0 = v0 = 0. (32)

By the comparison theorem of ODEs (Gronwall’s inequality), and solution of linear ODEs, we
claim that for all t > 0,

vt ≤ wt ≤ ut, ut =
b

α
(1− e−αt), vt =

b

β
(1− e−βt). (33)

In a similar manner, for the following three dynamics of regularized loss:

dŵt,λ = −(∇L(ŵt,λ) + λŵt,λ) dt,

dût,λ = −((λ+ α)ût,λ − b) dt, dv̂t,λ = −((λ+ β)v̂t,λ − b) dt,
(34)

where ŵ0,λ = û0,λ = v̂0,λ = 0. Similarly we have for all t > 0,

v̂t,λ ≤ ŵt,λ ≤ ût,λ, ût,λ =
b

λ+ α
(1− e−(λ+α)t), v̂t,λ =

b

λ+ β
(1− e−(λ+β)t). (35)

For the continuous weighting scheme

Pt = 1− e−ζt, pt = ζe−ζt, t ≥ 0, ζ > 0, (36)

the averaged solution is defined as w̃t = 1
Pt

∫ t
0 ptwt dt = wt− 1

Pt

∫ t
0 Ps dws, similar there are ũt, ṽt.

Thanks to Eq. (33) and pt being non-negative, we have ṽt ≤ w̃t ≤ ũt. Let

λ1 = ζ + β − α, λ2 = ζ + α− β, (37)

then

Pt(ut − ũt) =

∫ t

0
Ps dus =

∫ t

0
(1− e−(λ2+β−α)s)be−αs dt = b

∫ t

0
e−αs − e−(β+λ2)s ds

=b

(
1

α
(1− e−αt)− 1

λ2 + β
(1− e−(λ2+β)t)

)
= ut − v̂t,λ2 .

(38)

Thus
w̃t − ŵt,λ2 ≤ ũt − v̂t,λ2 = ũt − ut + Pt(ut − ũt) = (1− Pt)(ũt − ut). (39)

Similarly, since

Pt(vt − ṽt) =

∫ t

0
Ps dvs =

∫ t

0
(1− e−(λ1−β+α)s)be−βs dt = b

∫ t

0
e−βs − e−(α+λ1)s ds

=b

(
1

β
(1− e−βt)− 1

λ1 + α
(1− e−(λ1+α)t)

)
= vt − ût,λ1 ,

(40)

10
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we can obtain a lower bound as

w̃t − ŵt,λ1 ≥ ṽt − ût,λ1 = ṽt − vt + Pt(vt − ṽt) = (1− Pt)(ṽt − vt). (41)

These inequalities give us

ŵt,λ1 + (1− Pt)(ṽt − vt) ≤ w̃t ≤ ŵt,λ2 + (1− Pt)(ũt − ut), (42)

which is the continuous version of the inequality in Theorem 2.

Appendix B. Technical Lemmas

Lemma 4 Given two series xk, x̂k, k ≥ 0, let x̃k = 1
Pk

∑k
i=0 pixi. Suppose x0 = x̂0 = 0. If the

weighting scheme Pk satisfies

x̂k+1 − x̂k = (1− Pk)(xk+1 − xk), k ≥ 0, (43)

then we have
Pk(xk − x̃k) = xk − x̂k, k ≥ 0, (44)

and
x̂k − x̃k = (1− Pk) (xk − x̃k), k ≥ 0. (45)

Proof By definition we know p0 = P0, pk = Pk − Pk−1, k ≥ 1, and

Pkx̃k =

k∑
i=1

pixi =

k∑
i=1

(Pi − Pi−1)xi =

k∑
i=1

Pixi −
k∑
i=1

Pi−1xi =

Pkxk +
k∑
i=1

Pi−1xi−1 −
k∑
i=1

Pi−1xi = Pkxk −
k∑
i=1

Pi−1(xi − xi−1).

(46)

Therefore

Pk(xk − x̃k) =
k∑
i=1

Pi−1(xi − xi−1) =
k∑
i=1

(xi − xi−1)−
k∑
i=1

(1− Pi−1)(xi − xi−1)

=xk −
k∑
i=1

(1− Pi−1)(xi − xi−1).

(47)

Now use condition (43), we obtain

Pk(xk − x̃k) = xk −
k∑
i=1

(x̂i − x̂i−1) = xk − x̂k, k ≥ 1. (48)

Thus there holds

x̂k − x̃k = xk − Pk(xk − x̃k)− x̃k = (1− Pt) (xk − x̃k), k ≥ 1. (49)

One can directly verify that the above equations also holds for k = 0, which concludes our proof.

11
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Lemma 5 Suppose x ∈ R. f(x) is α-strongly convex and β-smooth, 0 < α ≤ β. Suppose f(x)
is lower bounded, then x∗ = argminx∈Rf(x) exists and is unique. Consider GD with learning rate
0 < η < 1

β , the optimization path {xk}+∞k=0 is given by

xk+1 = xk − η∇f(xk). (50)

If x0 < x∗, then we have

1. For all k > 0, xk ∈ (x0, x∗).

2. For all x ∈ (x0, x∗), we have β(x− x∗) ≤ ∇f(x) ≤ α(x− x∗).

3. For all x ∈ (x0, x∗), we have α(x− x0) +∇f(x0) ≤ ∇f(x) ≤ β(x− x0) +∇f(x0).

Similarly if x0 > x∗, then we have

1. For all k > 0, xk ∈ (x∗, x0).

2. For all x ∈ (x∗, x0), we have α(x− x∗) ≤ ∇f(x) ≤ β(x− x∗).

3. For all x ∈ (x∗, x0), we have β(x− x0) +∇f(x0) ≤ ∇f(x) ≤ α(x− x0) +∇f(x0).

Proof We only prove Lemma 5 in case of x0 < x∗. The other case is true in a similar manner.
To prove the first conclusion we only need to show that x0 < x1 < x∗, then recursively we

obtain x0 < x1 < · · · < xk < x∗.
Note that∇f(x∗) = 0. Since f(x) is α-strongly convex and β-smooth, we have [23]

α(x− y)2 ≤
(
∇f(x)−∇f(y)

)
(x− y) ≤ β(x− y)2. (51)

Thus α(x∗−x0)2 ≤ −∇f(x0)(x∗−x0) ≤ β(x∗−x0)2. Now by the assumption that x0 < x∗, we
obtain 0 < α(x∗ − x0) ≤ −∇f(x0) ≤ β(x∗ − x0). Hence

x1 = x0 − η∇f(x0) > x0

x1 = x0 − η∇f(x0) < x0 + ηβ(x∗ − x0) < x0 + x∗ − x0 < x∗.
(52)

To prove the second conclusion, recall that α(x∗−x)2 ≤ −∇f(x)(x∗−x) ≤ β(x∗−x)2, thus
for x ∈ (x0, x∗), we obtain α(x∗ − x) ≤ −∇f(x) ≤ β(x∗ − x).

As for the third conclusion, since α(x − x0)2 ≤ (∇f(x) − ∇f(x0))(x − x0) ≤ β(x − x0)2,
thus for x ∈ (x0, x∗), we obtain α(x − x0) +∇f(x0) ≤ ∇f(x) ≤ β(x − x0) +∇f(x0). which
completes our proof.

Appendix C. Missing proofs in main text

C.1. Proof of Theorem 1

Proof First, provide 0 < η < 1
β <

1
α and γ = 1

1
η

+λ
, we have

ηα

α+ λ
=

1
1
η + λ

ηα

<
1

1
η + λ

= γ <
1

β + λ
≤ 1

α+ λ
. (53)

12
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Therefore 0 <
1−
√
γ(α+λ)

1−√ηα < 1, and

Pk = 1− γ

η

(
1−

√
γ(α+ λ)

1−√ηα

)k−1

, pk = Pk − Pk−1, (54)

is a well defined weighting scheme, i.e., Pk is non-negative, non-decreasing and limk→∞ Pk = 1.
Let zk = E[wk+1]− E[wk], ẑk = E[ŵk+1]− E[ŵk], we first show that

(1− Pk)zk = ẑk, k ≥ 0. (55)

Then according to Lemma 4, we prove the first conclusion in Theorem 1.

The solution of zk Remember that wk iterates as

wk+1 = vk − η(xk+1x
T
k+1vk − xk+1yk+1), vk = wk + τ(wk − wk−1), w0 = w1 = 0, (56)

where τ =
1−√ηα
1+
√
ηα . Taking expectation with respect to the random mini-batch sampling procedure,

since E[xk+1x
T
k+1] = 1

n

∑n
i=1 xix

T
i = Σ, E[xk+1yk+1] = 1

n

∑n
i=1 xiyi = a, we have

E[wk+1] = E[vk]−η(ΣE[vk]−a), E[vk] = E[wk]+τ(E[wk]−E[wk−1]), E[w0] = E[w1] = 0.
(57)

Eliminate E[vk] we obtain

E[wk+1]− (1 + τ)(1− ηΣ)E[wk] + τ(1− ηΣ)E[wk−1] + ηa = 0, E[w0] = E[w1] = 0. (58)

Thus zk = E[wk+1]− E[wk] satisfies

zk+1 − (1 + τ)(1− ηΣ)zk + τ(1− ηΣ)zk−1 = 0, z0 = 0, z1 = −ηa. (59)

Without loss of generality, let us assume Σ is diagonal in the following. Otherwise consider
its eigenvalue decomposition Σ = UΛUT , and replace zk with UT zk. All of the operators in the
following are defined entry-wisely.

Eq. (59) defines a homogeneous linear recurrence relation with constant coefficients, which
could be solved in a standard manner. Let

A = (1 + τ)(1− ηΣ) =
2(1− ηΣ)

1 +
√
ηα

, B = −τ(1− ηΣ) =
−(1−√ηα)(1− ηΣ)

1 +
√
ηα

, (60)

then the characteristic function of Eq. (59) is

r2 −Ar −B = 0. (61)

Since Σ is diagonal, 0 < η < 1
α , and α is not greater than the smallest eigenvalue of Σ, we have

A2 + 4B =
4η(1− ηΣ)(α− Σ)

(1 +
√
ηα)2

≤ 0. (62)

Thus the characteristic function (61) has two conjugate complex roots r1 and r2 (they might be
equal). Suppose r1,2 = s± ti. Then the solution of Eq. (59) can be written as

zk = 2(−B)
k
2
(
E cos(θk) + F sin(θk)

)
, k ≥ 0, (63)

13
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where E and F are constants decided by initial conditions z0 = 0, z1 = −ηa, and θ satisfies

cos(θ) =
s√

s2 + t2
, sin(θ) =

t√
s2 + t2

, r1,2 = s± ti. (64)

Since 2s = r1 + r2 = A, s2 + t2 = r1ṙ2 = −B, we have

cos(θ) =
A

2
√
−B

=

√
1− ηΣ

1− ηα
, sin(θ) =

√
−4B −A2

2
√
−B

=

√
η(Σ− α)

1− ηα
. (65)

Because z0 = 0, z1 = −ηa, we know that

E = 0, 2F =
−ηa

(−B)
1
2 sin(θ)

. (66)

Thus
zk =

−ηa
sin(θ)

(−B)
k−1
2 sin(θk), k ≥ 2, z0 = 0, z1 = −ηa. (67)

where

B =
−(1−√ηα)(1− ηΣ)

1 +
√
ηα

, cos(θ) =

√
1− ηΣ

1− ηα
, sin(θ) =

√
η(Σ− α)

1− ηα
. (68)

One can directly verify that Eq. (67) solves the recurrence relation (59).

The solution of ẑk Similarly treat the optimization path of the regularized loss, which updates as

ŵk+1 = v̂k − γ
(

(xk+1x
T
k+1 + λ)v̂k − xk+1yk+1

)
, v̂k = ŵk + τ̂(ŵk − ŵk−1), ŵ0 = ŵ1 = 0,

(69)

where τ̂ =
1−
√
γ(α+λ)

1+
√
γ(α+λ)

. Taking expectation we obtain

E[ŵk+1] = E[v̂k]− γ((Σ + λ)E[v̂k]− a), E[v̂k] = E[ŵk] + τ̂(E[ŵk]− E[ŵk−1]), (70)

where E[ŵ0] = E[ŵ1] = 0. Thus ẑk = E[ŵk+1]− E[ŵk] satisfies

ẑk+1 − (1 + τ̂)(1− γ(Σ + λ))ẑk + τ̂(1− γ(Σ + λ))ẑk−1 = 0, ẑ0 = 0, ẑ1 = −γa. (71)

Repeat the calculation, we obtain

ẑk =
−γa

sin(θ̂)
(−B̂)

k−1
2 sin(θ̂k), k ≥ 2, ẑ0 = 0, ẑ1 = −γa. (72)

where

B̂ =
−(1−

√
γ(α+ λ))(1− γ(Σ + λ))

1 +
√
γ(α+ λ)

,

cos(θ̂) =

√
1− γ(Σ + λ)

1− γ(α+ λ)
, sin(θ̂) =

√
γ(Σ− α)

1− γ(α+ λ)
.

(73)

14
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Verify Eq. (55) in Lemma 4 First we show that if 1− λγ = γ
η , we have θ ≡ θ̂ (mod 2π). To see

this, we only need to verify that cos(θ̂) = cos(θ), sin(θ̂) = sin(θ):

cos(θ̂) =

√
1− γλ− γΣ

1− γλ− γα
=

√√√√ γ
η − γΣ
γ
η − γα

=

√
1− ηΣ

1− ηα
= cos(θ); (74)

sin(θ̂) =

√
γ(Σ− α)

1− γλ− γα
=

√
γ(Σ− α)
γ
η − γα

=

√
η(Σ− α)

1− ηα
= sin(θ). (75)

Therefore sin(θ̂) = sin(θ), sin(θ̂k) = sin(θk), and we have

zk =
−ηa

sin(θ)
(−B)

k−1
2 sin(θk), ẑk =

−γa
sin(θ)

(−B̂)
k−1
2 sin(θk). (76)

Since

1− Pk =
γ

η

(
1−

√
γ(α+ λ)

1−√ηα

)k−1

,
γ

η
= 1− λγ, (77)

we have

η

γ
(1− Pk)(−B)

k−1
2 =

(
(1−

√
γ(α+ λ))2

(1−√ηα)2
·

(1−√ηα)(1− ηΣ)

1 +
√
ηα

) k−1
2

=

(
(1−

√
γ(α+ λ))2(1− ηΣ)

1− ηα

) k−1
2

=

(
(1−

√
γ(α+ λ))2(1− γ(Σ + λ))

1− γ(α+ λ)

) k−1
2

=

(
(1−

√
γ(α+ λ))(1− γ(Σ + λ))

1 +
√
γ(α+ λ)

) k−1
2

= (−B̂)
k−1
2 .

(78)

Thus (1− Pk)zk = ẑk. And according to Lemma 4, we have

E[ŵk]− E[w̃k] = (1− Pk) (E[wk]− E[w̃k]), k ≥ 0. (79)

The convergence of E[w̃k] Since L(w) is β-smooth, and the corresponding learning rate η < 1
β ,

E[wk] converges [3]. Since L̂(ŵ) = L(ŵ) + λ
2‖ŵ‖

2
2 is (β + λ)-smooth, and the corresponding

learning rate γ ≤ 1
β+λ (see Eq. (53)), E[ŵk] converges [3]. Specifically for linear regression, these

can be also verified by noticing that 0 < −B < 1 because η < 1
β and

k∑
i=1

|zi| =
k∑
i=1

∣∣∣∣ −ηasin(θ)
(−B)

i−1
2 sin(θi)

∣∣∣∣ ≤ k∑
i=1

∣∣∣∣ −ηasin(θ)
(−B)

i−1
2

∣∣∣∣ < +∞, (80)

i.e., the right hand side of the above series converge, which implies that E[wk] =
∑k

i=1 zi converges
absolutely, hence it converges. In a same manner E[ŵk] converges.

Thus there exist constants M and K such that for all k > K,
∥∥E[wk]

∥∥
2
≤ M ,

∥∥E[ŵk]
∥∥

2
≤ M .

Hence ∥∥E[ŵk]− E[w̃k]
∥∥

2
= (1− Pk)

∥∥E[wk]− E[ŵk]
∥∥

1
≤ γ

η
Ck−1 · 2M = O(Ck). (81)
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Note that C =
1−
√
γ(α+λ)

1−√ηα ∈ (0, 1), thus by taking limitation in both sides we obtain

lim
k→∞

E[w̃k] = lim
k→∞

E[ŵk], (82)

which concludes our proof.

C.2. Proof of Theorem 2

Proof We will prove a stronger version of Theorem 2 by showing the conclusions in Theorem 2
hold along any 1-dim direction v1 ∈ Rd. Concisely, given a unit vector v1 ∈ Rd, we can extend it
to a group of orthogonal basis, v1, v2, . . . , vd. For w ∈ Rd, we denote its decomposition as

w = w(1)v1 + w(2)v2 + · · ·+ w(d)vd, w(i) ∈ R. (83)

Define h(w(1)) = L(w) = L(w(1)v1 + · · · + w(d)vd), then ∇h(w(1)) = vT1 ∇L(w). Now for one
step of GD,

wk+1 = wk − η∇L(wk), (84)

by multiplying v1 in both sides, we obtain

w
(1)
k+1 = vT1 wk+1 = vT1 wk − ηvT1 ∇L(wk) = w

(1)
k − η∇h(w

(1)
k ). (85)

We turn to study GD along direction v1 by analyzing Eq. (85).
Firstly h(w(1)) is α-strongly convex, β-smooth and lower bounded since L(w) is α-strongly

convex, β-smooth, and lower bounded. Let w∗ be the unique minimal of L(w), then w(1)
∗ = vT1 w∗

is the minimal of h(w(1)). With out losing generality, assume

w
(1)
∗ > 0 = w

(1)
0 . (86)

Then by Lemma 5, we know the optimization path of Eq. (85) lies between (w
(1)
∗ , 0), and for any

v ∈ (w
(1)
∗ , 0), we have

αv − b ≤ ∇h(v) ≤ βv − b, b = −∇L(0). (87)

Thus for Eq. (85) we have

w
(1)
k+1 − w

(1)
k =− η∇h(w

(1)
k ) ≤ −η(αw

(1)
k − b),

w
(1)
k+1 − w

(1)
k =− η∇h(w

(1)
k ) ≥ −η(βw

(1)
k − b).

(88)

Define the following dynamics:

u
(1)
k+1 − u

(1)
k = −η(αu

(1)
k − b), v

(1)
k+1 − v

(1)
k = −η(βv

(1)
k − b), u

(1)
0 = v

(1)
0 = 0. (89)

By the discrete Gronwall’s inequality [4], we have

v
(1)
k ≤ w

(1)
k ≤ u

(1)
k . (90)
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Furthermore, u(1)
k and v(1)

k satisfy two first order recurrence relations respectively, thus they are
solved by

u
(1)
k = η

k∑
i=1

(1− ηα)i−1b, v
(1)
k = η

k∑
i=1

(1− ηβ)i−1b. (91)

Since η < 1
β ≤

1
α , uk and vk converge, and limk→+∞ uk = limk→+∞ vk = w

(1)
∗ . w

(1)
k also

converges since L(w) is β-smooth convex and η < 1
β .

In a same way, for the regularized path,

ŵ
(1)
k+1,λ = ŵ

(1)
k,λ − γ(∇h(ŵ

(1)
k,λ) + λŵ

(1)
k,λ), ŵ

(1)
0,λ = 0, (92)

we have
ŵ

(1)
k+1,λ − ŵ

(1)
k,λ =− γ(∇h(ŵ

(1)
k,λ) + λŵ

(1)
k,λ) ≤ −γ

(
(α+ λ)ŵ

(1)
k,λ − b

)
,

ŵ
(1)
k+1,λ − ŵ

(1)
k,λ =− γ(∇h(ŵ

(1)
k,λ) + λŵ

(1)
k,λ) ≥ −γ

(
(β + λ)ŵ

(1)
k,λ − b

)
.

(93)

Consider the following dynamics:

û
(1)
k+1,λ − û

(1)
k,λ = −γ((α+ λ)û

(1)
k,λ − b), v̂

(1)
k+1,λ − v̂

(1)
k,λ = −γ((β + λ)v̂

(1)
k,λ − b), (94)

where û(1)
0,λ = v̂

(1)
0,λ = 0. Then by the discrete Gronwall’s inequality and the solution of the first

order recurrence relation we obtain

v̂
(1)
k,λ ≤ ŵ

(1)
k,λ ≤ û

(1)
k,λ, û

(1)
k,λ = γ

k∑
i=1

(1− γ(α+λ))i−1b, v̂
(1)
k,λ = γ

k∑
i=1

(1− γ(β+λ))i−1b. (95)

Now we turn to bound the iterate averaged solution. Consider

λ1 =
1

γ
− 1

η
+ β − α, λ2 =

1

γ
− 1

η
+ α− β, (96)

since β ≥ α and 0 < γ < 1
β−α+1/η we know λ1 ≥ λ2 > 0. Notice that 0 < γ(α + λ2) ≤

{γ(α + λ1), γ(β + λ2)} ≤ γ(β + λ1) = 1 − γ(− 1
η + 2β − α) < 1, where the last inequality is

because η > 1
2β−α . Thus û(1)

k,λ1
, û(1)

k,λ2
, v̂(1)
k,λ1

, v̂(1)
k,λ2

converge. Further ŵk,λ1 and ŵk,λ2 also converge
since γ < 1

β+λ1
≤ 1

β+λ2
and the corresponding regularized losses are (β+λ1) and (β+λ2)-smooth,

respectively.

Next let us consider the weight scheme Pk = 1−
(
γ
η

)k+1
, which is well defined since 0 < γ <

1
β−α+1/η ≤ η.

One can directly verify that ũ(1)
k = 1

Pk

∑k
i=1 piu

(1)
i , ṽ

(1)
k = 1

Pk

∑k
i=1 piv

(1)
i converge, and

(1− Pk)(u
(1)
k+1 − u

(1)
k ) = v̂

(1)
k+1,λ2

− v̂(1)
k,λ2

, (1− Pk)(v
(1)
k+1 − v

(1)
k ) = û

(1)
k+1,λ1

− û(1)
k,λ1

. (97)

Thus according to Lemma 4 we have

Pk(u
(1)
k − ũ

(1)
k ) = u

(1)
k − v̂

(1)
k,λ2

, Pk(v
(1)
k − ṽ

(1)
k ) = v

(1)
k − û

(1)
k,λ1

. (98)
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Therefore

w̃
(1)
k − ŵ

(1)
k,λ2
≤ ũ(1)

k − v̂
(1)
k,λ2

= ũ
(1)
k − u

(1)
k + Pk(u

(1)
k − ũ

(1)
k ) = (1− Pk)(ũ

(1)
k − u

(1)
k ),

w̃
(1)
k − ŵ

(1)
k,λ1
≥ ṽ(1)

k − û
(1)
k,λ1

= ṽ
(1)
k − v

(1)
k + Pk(v

(1)
k − ṽ

(1)
k ) = (1− Pk)(ṽ

(1)
k − v

(1)
k ),

(99)

which implies that

ŵ
(1)
k,λ1

+ (1− Pk)(ṽ
(1)
k − v

(1)
k ) ≤ w̃(1)

k ≤ ŵ
(1)
k,λ2

+ (1− Pk)(ũ
(1)
k − u

(1)
k ). (100)

This completes the proof of the first conclusion in Theorem 2.
Note that u(1)

k , ũ
(1)
k , v

(1)
k , ṽ

(1)
k , ŵ

(1)
k,λ1

, ŵ
(1)
k,λ2

converge, therefore there is a constant M bound

their `2-norm. Definem(1)
k = (ŵ

(1)
k,λ2

+ŵ
(1)
k,λ1

)/2, d(1)
k = (ŵ

(1)
k,λ2
−ŵ(1)

k,λ1
)/2. Recall that ŵ(1)

k,λ1
are the

GD optimization path of a (α+λ1)-strongly convex and (β+λ1)-smooth loss, thus ŵ(1)
k,λ1

converges

in rate O
(

(1− γ(α+ λ1))k
)

. Similarly ŵ(1)
k,λ2

converges in rate O
(

(1− γ(α+ λ2))k
)

. Thus by
triangle inequality we have∥∥∥m(1)

k −m
(1)
∥∥∥

2
≤1

2

∥∥∥ŵ(1)
k,λ2
− ŵ(1)

∞,λ2

∥∥∥
2

+
1

2

∥∥∥ŵ(1)
k,λ1
− ŵ(1)

∞,λ1

∥∥∥
2

≤O
(

(1− γ(α+ λ1))k
)

+O
(

(1− γ(α+ λ2))k
)
.∥∥∥d(1)

k − d
(1)
∥∥∥

2
≤1

2

∥∥∥ŵ(1)
k,λ2
− ŵ(1)

∞,λ2

∥∥∥
2

+
1

2

∥∥∥ŵ(1)
k,λ1
− ŵ(1)

∞,λ1

∥∥∥
2

≤O
(

(1− γ(α+ λ1))k
)

+O
(

(1− γ(α+ λ2))k
)
.

(101)

By Eq. (100) we obtain

w̃
(1)
k −m

(1)
k ≤d

(1)
k + (1− Pk)(ũ

(1)
k − u

(1)
k ) ≤ d(1)

k + 2M

(
γ

η

)k+1

=d(1) + d(1) − d(1)
k +O

((
γ

η

)k)

≤d(1) +O
(

(1− γ(α+ λ1))k
)

+O
(

(1− γ(α+ λ2))k
)

+O

((
γ

η

)k)
.

w̃
(1)
k −m

(1)
k ≥d

(1)
k + (1− Pk)(ṽ

(1)
k − v

(1)
k ) ≥ d(1)

k − 2M

(
γ

η

)k+1

=d(1) + d(1) − d(1)
k −O

((
γ

η

)k)

≥d(1) −O
(

(1− γ(α+ λ1))k
)
−O

(
(1− γ(α+ λ2))k

)
−O

((
γ

η

)k)
.

(102)

Thus ∥∥∥w̃(1)
k −m

(1)
k

∥∥∥
2
≤ O(Ck), C = max{(1− γ(α+ λ1), (1− γ(α+ λ2),

γ

η
}. (103)
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Therefore ∥∥∥w̃(1)
k −m

(1)
∥∥∥

2
≤
∥∥∥w̃(1)

k −m
(1)
k

∥∥∥
2

+
∥∥∥m(1)

k −m
(1)
∥∥∥

2
≤ O(Ck), (104)

which completes our proof.
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