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Abstract
Iterative optimization algorithms generally consist of two components: a step direction and a step
size. In this work, we focus on zeroth and first order methods for choosing the step size along either
the negative gradient or a negative stochastic gradient. Line search methods are well-studied, with
one of the most common being backtracking line search. Backtracking line search starts with an
initial step size that is intended to be too large (greater than the inverse Lipschitz constant of the
gradient), and then iteratively shrinks the step size until the Armijo condition for sufficient function
decrease is satisfied. We propose two algorithms that match or improve upon the performance of
backtracking line search in both theory (convergence rate bounds for deterministic gradient descent)
and empirical performance (for both deterministic and stochastic gradient descent), depending on
the initial step size, while providing an intuitive interpretation of each algorithm.

1. Introduction

Backtracking line search (as it is typically presented, e.g. in [17], [15], and [14]) begins with a
user-specified initial step size, and adaptively decreases that step size until the Armijo condition [2]

f(xk − tk∇f(xk)) ≤ f(xk)−
tk
2
‖∇f(xk)‖2 (1)

is satisfied in order to guarantee convergence. This procedure is theoretically well-motivated in the
context of deterministic gradient descent with a sufficiently large initial step size, for use on convex
objective functions with Lipschitz gradients. Each of these classical assumptions, however, is often
violated in practice. Much prior work has managed to remove some of these assumptions in certain
contexts; in this paper we continue their efforts.

1.1. Stochastic gradients

In practice, many optimization objectives include a sum over examples in a dataset of a per-example
loss function, such as (optionally regularized) least squares and logistic regression. On large datasets,
such objectives are typically optimized using stochastic gradient descent [18], in which the gradient
at every iteration is computed on a subset (minibatch) of the dataset. Because the gradient and func-
tion evaluations in this minibatch setting are stochastic approximations of the objective, it is a priori
unclear whether a line search method would be beneficial. Standard practice in stochastic gradient
descent is to choose a fixed step size (often referred to as learning rate), a decreasing step size, or a
hand-tuned schedule of step sizes in each iteration [4].
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Many methods have been proposed for automatically adjusting the step size during the course
of stochastic gradient descent, e.g. [19], [1], and [9]. One class of approaches combines a classical
line search with a variance reduction method, typically by adaptively adjusting the minibatch size
in each iteration to ensure sufficiently accurate stochastic gradients [16] [6] [10]. It is also possible
to guarantee efficient convergence without increasing the minibatch size, e.g. using the stochastic
average gradient method of [20] with a fixed step size or using vanilla stochastic gradients with
an adaptive step size (changed at most once per iteration), as in [5]. In the case of interpolating
classifiers, [21] prove that Armijo-based backtracking line search with a periodic step size reset
converges at the same rate in stochastic (minibatch) and deterministic (full) gradient settings.

We build upon this line of work, particularly that of Berahas, Cao, Choromanski, and Scheinberg
[5], by introducing two line search methods that are empirically competitive in the stochastic setting
with the line search method whose convergence they guarantee.

1.2. Non-Lipschitz gradients and non-convexity

The Armijo condition is automatically satisfied by gradient descent on a convex objective with L-
Lipschitz gradients and a step size no more than 1

L . However, in practice some objective functions
violate these conditions and yet have unique minima (e.g. f(x) =

√
|x| for a one-dimensional

example). Other objectives may satisfy these conditions but have a wide, flat minimum (e.g. f(x) =
x100 for a one-dimensional example) that is very slow to minimize using an Armijo line search. We
introduce a line search method (Algorithm 2) that is independent of the Armijo condition, choosing a
step size based on function evaluations only. This property additionally makes Algorithm 2 suitable
for adaptation to derivative-free optimization, e.g. as in [11].

1.3. Initial step size too small

Although the traditional version of backtracking line search (e.g. in [17]) only decreases the step
size, variants that increase and decrease the step size are also common: see e.g. [5], [16] [21], [22],
[7], [13], and [12]. However, these methods either increase the step size by at most a constant factor
in each iteration or require additional gradient evaluations to select the step size. We refer to these
two versions of backtracking line search as traditional backtracking line search (Algorithm 3, never
increases the step size) and adaptive backtracking line search (Algorithm 4, increases the initial step
size by a constant factor in each iteration). Both algorithms we introduce can increase or decrease
the step size as much as necessary in each iteration, with no additional gradient evaluations.

1.4. Contribution

Prior work has shown that line search methods can dramatically improve the performance of both
deterministic and stochastic gradient descent. The latter is a highly nontrivial result, as we would
not a priori expect that putting more effort into choosing a step size along a randomized direction
would be beneficial. The contribution of this work is to speed up the line search component of these
algorithms for both settings, by increasing the step size more consistently than prior methods. We
also introduce a line search method similar to golden-section search [3] that does not rely on the
Armijo condition, and is even more broadly applicable. We prove convergence rates in terms of both
number of steps (gradient evaluations) and number of function evaluations per step in the convex
and strongly convex settings under deterministic gradient descent, and present empirical results in
the deterministic and stochastic (minibatch) settings.
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2. Proposed algorithms

To guarantee efficient convergence for gradient descent, traditional backtracking line search as-
sumes that the initial step size is larger than the inverse Lipschitz constant of the gradient [14]. In
practice, this quantity is unknown, and estimating it is one of the purposes of line search algorithms.
We propose a natural extension, forward-tracking line search (Algorithm 1), which iteratively grows
or shrinks the initial step size as necessary to more tightly satisfy the Armijo condition and adap-
tively adjusts the initial step size across gradient steps to minimize unnecessary function evaluations.
This procedure is designed to use the largest step size that the Armijo condition can guarantee con-
verges, reducing the number of (stochastic) gradient steps, while keeping the number of function
evaluations in each step small.

Backtracking line search and Algorithm 1, as well as [5] and most line search methods that
avoid extra gradient evaluations, rely on the Armijo condition to choose a step size that guarantees
sufficient function decrease. Although this approach tends to work well, it is specifically designed
for convex objective functions with Lipschitz gradients. Accordingly, we propose approximately
exact line search (Algorithm 2), which extends golden section search [3] to efficiently find a step
size within a constant factor of the exact line search minimizer of any unimodal objective, using
only function evaluations. The idea of Algorithm 2 is to increase the step size until the line search
objective becomes nondecreasing, then decrease the step size to use the largest step size that does
not exceed the exact line search minimizer.

Algorithm 1: Forward-Tracking Line Search
Input: f, x0,K, T0 > 0, β ∈ (0, 1)
fold ← f(x0)
t← T0
for k = 0, k < K, k = k + 1 do

t← t/β
fnew ← f(xk − t∇f(xk))
while fnew < fold − 1

2 t‖∇f(xk)‖
2 do

t← t/β

fnew ← f(xk − t∇f(xk))
end

while fnew > fold − 1
2 t‖∇f(xk)‖

2 do
t← βt

fnew ← f(xk − t∇f(xk))
end
xk+1 ← xk − t∇f(xk)
fold ← fnew

end
return xK

Algorithm 2: Approximately Exact Line Search
Input: f, x0,K, T0 > 0, β ∈ (0, 1)
fold ← f(x0)
t← T0
for k = 0, k < K, k = k + 1 do

t← t/β
fnew ← f(xk − t∇f(xk))
while fnew < fold do

t← t/β
fold ← fnew
fnew ← f(xk − t∇f(xk))

end
t← βt
fold ← fnew
fnew ← f(xk − t∇f(xk))
while fnew ≤ fold do

t← βt
fold ← fnew
fnew ← f(xk − t∇f(xk))

end
xk+1 ← xk − t∇f(xk)
fold ← fnew

end
return xK
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3. Theoretical results

Proofs can be found in Section 5.

3.1. Forward-tracking line search

Invariant 1 Let t be the step size used in a step of Algorithm 1. Then t ∈ [βta, ta], where ta is the
step size that satisfies the Armijo condition with equality (f(x− ta∇f(x)) = f(x)− ta

2 ‖∇f(x)‖
2).

Theorem 2 The iterates of Algorithm 1 on a weakly convex objective f with L-Lipschitz gradients
satisfy

‖∇f(xk)‖2 ≤
2L

β
(f(xk)− f(xk+1))

Corollary 3 On weakly convex objectives with L-Lipschitz gradients, Algorithm 1 achieves opti-
mality gap ε within

L‖x0 − x∗‖2

2εβ

steps (gradient evaluations).

This bound is an improvement compared to the corresponding bound of L‖x0−x∗‖2
2εmin(LT0,β)

steps for

traditional backtracking line search (Theorem 20) or L‖x0−x∗‖2
2εβ + logβ(T0L)+ steps for adaptive

backtracking line search (Theorem 22).

Theorem 4 On m-strongly convex objectives with L-Lipschitz gradients, Algorithm 1 achieves
optimality gap ε within

L

mβ
log

(
L‖x0 − x∗‖2

ε

)
steps, using no more than

k
(
2 + logβ

(m
L

))
+ logβ

(
min

(
β

mT0
, LT0

))
function evaluations for k steps.

The corresponding bounds for traditional and adaptive backtracking line search are stated in Theo-
rem 21 and Theorem 23, respectively.

3.2. Approximately exact line search

Invariant 5 Let t be the step size used in a step of Algorithm 2. Then t ∈ [β2t∗, t∗], where t∗ is the
step size used in exact line search.

Theorem 6 Let t∗ be the step size used by exact line search starting at xk. Then the iterates of
Algorithm 2 on a weakly convex objective f with L-Lipschitz gradients satisfy

‖∇f(xk)‖2 ≤
2L

min(β2Lt∗, 1)
(f(xk)− f(xk+1))

4



CHOOSING THE STEP SIZE: INTUITIVE LINE SEARCH ALGORITHMS WITH EFFICIENT CONVERGENCE

Theorem 7 On m-strongly convex objectives with L-Lipschitz gradients, Algorithm 2 achieves
optimality gap ε within

1

β2
(
1−

√
1− m

L

) log(L‖x0 − x∗‖2
ε

)
steps, using no more than

k

(
5 + logβ

(
1−

√
1−m/L

1 +
√

1−m/L

))
+ logβ

(
min

(
mT0

β(1−
√

1−m/L)
,
β(1 +

√
1−m/L)

mT0

))
function evaluations for k steps.

4. Empirical results

Figure 1 shows the empirical performance of Algorithms 1 (forward-tracking) and 2 (approximately
exact) as compared to traditional and adaptive backtracking line search and the line search method
of Berahas et al. [5] on a logistic regression objective (with λ = 1

n ):

f(w) =
λ

2
wTw +

1

n

n∑
i=1

log(1 + exp(−yi(wTxi)))

for the quantum dataset provided by [8], which has 50,000 examples xi, each with 78 features.

Figure 1: Performance on the quantum dataset to a relative error of 0.1%, as a function of user-
specified initial step size T0. The top row shows deterministic gradient descent, and the
bottom row shows stochastic gradient descent with minibatches of 100 examples each.
Lines indicate average performance, with error bars showing variation over 10 trials.
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5. Appendix

In this section, we prove the results in Section 3.

5.1. Preliminaries

In this section, we introduce useful notation, definitions, and lemmas. We begin by defining nota-
tion:

• ‖·‖ ≡ ‖·‖2, the Euclidean norm

• (·)+ ≡ max(·, 0)

Definition 8 A function f has L-Lipschitz gradient if:

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖

Definition 9 A function f is (weakly) convex if:

f(y) ≥ f(x) +∇f(x)T (y − x)

Definition 10 A function f is m-strongly convex if:

f(y) ≥ f(x) +∇f(x)T (y − x) + m

2
‖y − x‖2
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Definition 11 Armijo condition [2]:

f(xk − t∇f(xk)) ≤ f(xk)− γt‖∇f(xk)‖2

where γ ∈ (0, 1), and typically γ = 1
2 (we use γ = 1

2 throughout).

Lemma 12 For any step size t and any (not necessarily convex) function f with L-Lipschitz gra-
dient, where xk+1 = xk − t∇f(xk),

f(xk+1) ≤ f(xk)− t
(
1− tL

2

)
‖∇f(xk)‖2

Proof From Taylor’s theorem (also using Cauchy-Schwarz and Lipschitz gradients),

f(y)− f(x)−∇f(x)T (y − x) =
∫ 1

0
(∇f(ty + (1− t)x)−∇f(x))T (y − x)dt

≤ ‖y − x‖
∫ 1

0
‖∇f(ty + (1− t)x)−∇f(x)‖dt

≤ ‖y − x‖
∫ 1

0
Lt‖y − x‖dt

=
L

2
‖y − x‖2

Therefore, f(y)− f(x)−∇f(x)T (y − x) ≤ L
2 ‖y − x‖

2. Taking y = xk+1 and x = xk:

f(xk+1)− f(xk)−∇f(xk)T (xk+1 − xk) ≤
L

2
‖xk+1 − xk‖2

⇒ f(xk+1) ≤ f(xk) +∇f(xk)T (−t∇f(xk)) +
L

2
‖−t∇f(xk)‖2

⇒ f(xk+1) ≤ f(xk)− t‖∇f(xk)‖2 +
Lt2

2
‖∇f(xk)‖2

Lemma 13 Let ti be the step size used in step i. If ti satisfies the Armijo condition, then

f(xk)− f∗ ≤
‖x0 − x∗‖2

2ktmin

where tmin ≤ ti ∀i = 1, 2, ...
Proof (based on http://seas.ucla.edu/˜vandenbe/ee236c.html)

f(xi+1) ≤ f(xi)−
ti
2
‖∇f(xi)‖2 (Armijo condition)

≤ f∗ +∇f(xi)T (xi − x∗)−
ti
2
‖∇f(xi)‖2 (convexity of f )

= f∗ +
1

2ti
(‖xi − x∗‖2 − ‖xi+1 − x∗‖2)

8
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This implies that ‖xi − x∗‖ ≥ ‖xi+1 − x∗‖, so we can replace ti with tmin ≤ ti in our subsequent
analysis:

f(xk)− f∗ ≤
1

k

k∑
i=1

(f(xi)− f∗)

≤ 1

k

k∑
i=1

1

2ti−1
(‖xi−1 − x∗‖2 − ‖xi − x∗‖2)

≤ 1

2ktmin
(‖x0 − x∗‖2 − ‖xk − x∗‖2)

≤ 1

2ktmin
‖x0 − x∗‖2

Lemma 13 allows us to directly translate a per-iteration function decrease of sufficient magni-
tude (compared to the norm of the gradient, based on the Armijo condition) into a 1

k convergence
rate.

Corollary 14 In order to achieve an objective value f(xk) that is within ε of the minimum f∗, given
that ti satisfies the Armijo condition for all steps i, the number of steps k ≤ ‖x0−x∗‖

2

2εtmin
is sufficient.

Lemma 15 If f is m-strongly convex, then

f(x)− f∗ ≤
1

2m
‖∇f(x)‖2

Proof (based on [17], chapter 3)

f(y) ≥ f(x) +∇f(x)T (y − x) + m

2
‖y − x‖2 (by strong convexity)

min
y
f(y) ≥ min

y
f(x) +∇f(x)T (y − x) + m

2
‖y − x‖2

f∗ ≥ f(x)−
1

2m
‖∇f(x)‖2 (y∗ = x∗ on the left and y∗ = x− 1

m
∇f(x) on the right)

Lemma 16 Let f be m-strongly convex and have L-Lipschitz gradient, and let ti be the step size
used in step i. If ti satisfies the Armijo condition and ti ≤ 1

m ∀i, then

f(xk)− f∗ ≤ L(1−mtmin)k‖x0 − x∗‖2

Proof (based on [17], chapter 3)

f(xi+1)− f∗ = f(xi − ti∇f(xi))− f∗

≤ f(xi)− f∗ −
ti
2
‖∇f(xi)‖2 (since ti satisfies Armijo)

≤ f(xi)− f∗ −mti(f(xi)− f∗) (Lemma 15)

≤ (1−mtmin)(f(xi)− f∗)

9
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Applying this relation iteratively yields:

f(xk)− f∗ ≤ (1−mtmin)k(f(x0)− f∗)
≤ L(1−mtmin)k‖x0 − x∗‖2

where the last step follows from convexity and Lipschitz gradient.

Corollary 17 In order to achieve an objective value f(xk) that is within ε of the minimum f∗, given
that ti satisfies the Armijo condition and ti ≤ 1

m ∀i, the number of steps k ≤ 1
mtmin

log
(
L‖x0−x∗‖2

ε

)
is sufficient.

Lemma 18 If f is m-strongly convex with L-Lipschitz gradient, then

1

L
≤ ta ≤

1

m

where ta solves the Armijo condition (Definition 11) with equality. Note that the first inequality
requires only the Lipschitz gradient condition, and the second requires only the strong convexity
condition.
Proof We begin by proving the first inequality, which assumes that the objective has L-Lipschitz
gradient. Using Lemma 12, we have:

f(xk − ta∇f(xk)) ≤ f(xk)− ta
(
1− taL

2

)
‖∇f(xk)‖2

Since ta solves the Armijo condition with equality, we have:

f(xk − ta∇f(xk)) = f(xk)−
ta
2
‖∇f(xk)‖2

Relating these, we have:

⇒ f(xk)−
ta
2
‖∇f(xk)‖2 ≤ f(xk)− ta

(
1− taL

2

)
‖∇f(xk)‖2

⇒ ta ≥
1

L

We proceed to prove the second inequality, which assumes that the objective is m-strongly con-
vex. By strong convexity, we have:

f(xk − ta∇f(xk)) ≥ f(xk)− ta
(
1− tam

2

)
‖∇f(xk)‖2

Since ta solves the Armijo condition with equality, we have:

f(xk − ta∇f(xk)) = f(xk)−
ta
2
‖∇f(xk)‖2

10
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Relating these, we have:

⇒ f(xk)−
ta
2
‖∇f(xk)‖2 ≥ f(xk)− ta

(
1− tam

2

)
‖∇f(xk)‖2

⇒ ta ≤
1

m

Lemma 19 If f is m-strongly convex with L-Lipschitz gradient, then

1

m

[
1−

√
1− m

L

]
≤ t∗ ≤

1

m

[
1 +

√
1− m

L

]
where t∗ = argmint f(x− t∇f(x)), the step size used in exact line search starting from any point
x.
Proof

f(x− t∗∇f(x)) ≤ f(x−
1

L
∇f(x))

≤ f(x)− 1

2L
‖∇f(x)‖2

From strong convexity (Definition 10), we have:

f(x− t∗∇f(x)) ≥ f(x)−∇f(x)T (t∗∇f(x)) +
m

2
‖t∗∇f(x)‖2

= f(x) +

(
t2∗m

2
− t∗

)
‖∇f(x)‖2

Combining these:

f(x) +

(
t2∗m

2
− t∗

)
‖∇f(x)‖2 ≤ f(x)− 1

2L
‖∇f(x)‖2

⇒ t2∗m− 2t∗ +
1

L
≤ 0

which is satisfied for t∗ in the interval
[

1
m −

√
1
m2 − 1

mL ,
1
m +

√
1
m2 − 1

mL

]
.
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5.2. Traditional backtracking line search

Algorithm 3: Traditional Backtracking Line Search
Input: f, x0,K, T0 > 0, β ∈ (0, 1)
fold ← f(x0)
for k = 0, k < K, k = k + 1 do

t← T0
fnew ← f(xk − t∇f(xk))
while fnew > fold − 1

2 t‖∇f(xk)‖
2 do

t← βt
fnew ← f(xk − t∇f(xk))

end
xk+1 ← xk − t∇f(xk)
fold ← fnew

end
return xK

Theorem 20 On weakly convex objectives with L-Lipschitz gradients, Algorithm 3 achieves opti-
mality gap ε within

L‖x0 − x∗‖2

2εmin(LT0, β)

steps, using no more than

1 + k

(
1 + logβ

(
1

LT0

)
+

)
function evaluations for k steps.
Proof We begin by proving the first statement, which bounds the number of steps. By construction,
the step size tk satisfies the Armijo condition. We can therefore apply Lemma 13 by calculating
tmin. If no backtracking was required in step k, then tk = T0. If backtracking was required, then
tk < T0 and β−1tk satisfies the opposite of the Armijo condition:

f(xk −
tk
β
∇f(xk)) > f(xk)−

tk
2β
‖∇f(xk)‖2

Using Lemma 12, we have:

f(xk −
tk
β
∇f(xk)) ≤ f(xk)−

tk
β

(
1− tkL

2β

)
‖∇f(xk)‖2

⇒ f(xk)−
tk
2β
‖∇f(xk)‖2 ≤ f(xk)−

tk
β

(
1− tkL

2β

)
‖∇f(xk)‖2

⇒ tk ≥
β

L

Therefore, tk ≥ min(T0,
β
L), so we can apply Lemma 13 with tmin = min(T0,

β
L). From Corol-

lary 14, we can conclude that Backtracking Line Search requires no more than

‖x0 − x∗‖2

2εmin(T0,
β
L)

(2)

12
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steps to achieve an objective value within ε of the global minimum.
Next, we prove the second statement, which bounds the number of function evaluations for k

steps. In a single step, Algorithm 3 makes one initial function evaluation (to compute f(xk −
T0∇f(xk))), then one additional function evaluation per iteration of the While loop. Let tk be the
step size found by Algorithm 3, ta be the step size that satisfies Definition 11 with equality in step k,
and q be the number of iterations of the While loop. Then we can write tk = T0β

q ≤ ta.
Consider two cases:

1. T0 > ta, in which caseq ≤ logβ(
ta
T0
)

2. T0 ≤ ta, so q = 0

Combining these cases, the total number of function evaluations in a single step k of Algorithm 3
is

nk = q + 1 ≤ 1 + logβ

(
ta
T0

)
+

≤ 1 + logβ

(
1

T0L

)
+

where the final inequality follows from Lemma 18.
We include n0 = 1 to count the initial evaluation of f(x0). The total number of function

evaluations required for k steps is therefore upper bounded by

1 + k

(
1 + logβ

(
1

T0L

)
+

)
(3)

Theorem 21 On m-strongly convex objectives with L-Lipschitz gradients, Algorithm 3 achieves
optimality gap ε within

L

mmin(LT0, β)
log

(
L‖x0 − x∗‖2

ε

)
steps. The number of function evaluations for k steps is bounded in Theorem 20.
Proof Since tk ≤ ta ≤ 1

m (by Lemma 18), we can apply Lemma 16 with tmin = min(T0,
β
L) (using

the reasoning from Theorem 20). The bound then follows from Corollary 17.

13
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5.3. Adaptive backtracking line search

Algorithm 4: Adaptive Backtracking Line Search
Input: f, x0,K, T0 > 0, β ∈ (0, 1)
fold ← f(x0)
t← T0
for k = 0, k < K, k = k + 1 do

t← t/β
fnew ← f(xk − t∇f(xk))
while fnew > fold − 1

2 t‖∇f(xk)‖
2 do

t← βt
fnew ← f(xk − t∇f(xk))

end
xk+1 ← xk − t∇f(xk)
fold ← fnew

end
return xK

Theorem 22 On weakly convex objectives with L-Lipschitz gradients, Algorithm 4 achieves opti-
mality gap ε within

L‖x0 − x∗‖2

2εβ
+ logβ(T0L)+

steps, using no more than

2(k + 1) + max

(
logβ

(
1

LT0

)
,−(k + 1)

)
function evaluations for k steps.
Proof We begin by proving the first statement, which bounds the number of steps. Let Tk denote
the initial step size at step k, and tk denote the step size used at step k. By construction, Tk+1 =

tk
β

and T1 = T0
β .

In a given step k, one of the following is true:

1. Backtracking occurred at some prior step i < k, so Ti ≥ 1
L . In this case, we know that

tk−1 ≥ β
L , so Tk ≥ 1

L

2. No backtracking has yet occurred, so tk−1 ≤ 1
L . In this case, Tk = T0

βk

Combining these cases, we have that Tk ≥ min( 1L ,
T0
βk

).
By construction, the step size tk satisfies the Armijo condition. We can therefore apply Lemma 13

by calculating tmin. If no backtracking was required in step k, then tk = Tk. If backtracking was
required, then tk < Tk. By construction, we have that β−1tk satisfies the opposite of the Armijo
condition:

f(xk −
tk
β
∇f(xk)) > f(xk)−

tk
2β
‖∇f(xk)‖2

14
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Using Lemma 12, we have:

f(xk −
tk
β
∇f(xk)) ≤ f(xk)−

tk
β

(
1− tkL

2β

)
‖∇f(xk)‖2

⇒ f(xk)−
tk
2β
‖∇f(xk)‖2 ≤ f(xk)−

tk
β

(
1− tkL

2β

)
‖∇f(xk)‖2

⇒ tk ≥
β

L

Therefore, tk ≥ min(Tk,
β
L) ≥ min( T0

βk
, βL). From this bound, we can see that there are two

potential phases of Algorithm 4: one in which the step size monotonically increases, and another in
which the step size is always ≥ β

L . The first phase requires no more than logβ(T0L)+ steps, and the

second requires no more than L‖x0−x∗‖2
2εβ (using Corollary 14).

We now proceed to bound the number of function evaluations required in the first k steps. Let
nk ≥ 1 be the number of function evaluations in step k and Nk be the total number of function
evaluations up to and including step k.

We begin by noting that Tk+1 = tk
β . We have that tk = Tkβ

nk−1, since each iteration of the
While loop multiplies by β (and one additional function evaluation is needed before the loop). Also
note that one function evaluation is needed before the first step is taken; we consider this as n0 = 1,
which is consistent with t0 = T0. Combined, we have:

Tk+1 =
1

β
Tkβ

nk−1

= Tkβ
nk−2

⇒ nk = 2 + logβ

(
Tk+1

Tk

)
⇒ Nk =

k∑
i=0

ni = 2(k + 1) + logβ

(
Tk+1

T0

)
⇒ Nk ≤ 2(k + 1) + logβ

(
min

(
1

LT0
,

1

βk+1

))

⇒ Nk ≤ 2(k + 1) + max(logβ

(
1

LT0

)
,−(k + 1)) (4)

To bound the number of function evaluations for a desired accuracy ε, we simply plug in our upper
bound for the number of steps k to compute the corresponding bound for Nk.

Theorem 23 On m-strongly convex objectives with L-Lipschitz gradients, Algorithm 4 achieves
optimality gap ε within

L

mβ
log

(
L‖x0 − x∗‖2

ε

)
+ logβ(T0L)+

steps. The number of function evaluations for k steps is bounded in Theorem 22.

15



CHOOSING THE STEP SIZE: INTUITIVE LINE SEARCH ALGORITHMS WITH EFFICIENT CONVERGENCE

Proof Since tk ≤ ta ≤ 1
m (by Lemma 18), we can apply Lemma 16 by calculating tmin. From

the reasoning in Theorem 22, tk ≥ min( T0
βk
, βL). From this bound, we can see that there are two

potential phases of Algorithm 4: one in which the step size monotonically increases, and another in
which the step size is always ≥ β

L . The first phase requires no more than logβ(T0L)+ steps, and the

second requires no more than L
mβ log

(
L‖x0−x∗‖2

ε

)
steps (by Corollary 17).

5.4. Forward-tracking line search

Proof [of Invariant 1] In each step, Algorithm 1 iteratively increases the step size by factors of β−1

until the Armijo condition is not satisfied and then decreases the step size by factors of β until the
Armijo condition is satisfied. This guarantees that t ≤ ta and β−1t > ta.

Proof [of Theorem 2] Consider a single gradient step k. Since backtracking was required, β−1tk
satisfies the opposite of the Armijo condition:

f(xk −
tk
β
∇f(xk)) > f(xk)−

tk
2β
‖∇f(xk)‖2

Using Lemma 12, we have:

f(xk −
tk
β
∇f(xk)) ≤ f(xk)−

tk
β
(1− tkL

2β
)‖∇f(xk)‖2

⇒ f(xk)−
tk
2β
‖∇f(xk)‖2 ≤ f(xk)−

tk
β
(1− tkL

2β
)‖∇f(xk)‖2

⇒ tk ≥
β

L

Since this tk must satisfy the Armijo condition, we have:

f(xk − tk∇f(xk)) ≤ f(xk)−
tk
2
‖∇f(xk)‖2

⇒ f(xk+1) ≤ f(xk)−
β

2L
‖∇f(xk)‖2

⇒ ‖∇f(xk)‖2 ≤
2L

β
(f(xk)− f(xk+1)) (5)

Proof [of Corollary 3] Since tk satisfies the Armijo condition, we can apply Lemma 13 with tmin =
β
L . The result then follows from Corollary 14.

Proof [of Theorem 4] Let Tk denote the step size at the beginning of the kth step of Algorithm 1,
and tk denote the step size used in the kth step. Let ta denote the step size (in step k) that would
satisfy the Armijo condition with equality.

We begin by proving the first statement, which bounds the number of gradient steps to achieve
a desired objective gap ε. Since tk ≤ ta ≤ 1

m (by Lemma 18), we can apply Lemma 16 with
tmin = β

L . The bound then follows from Corollary 17.

16
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We now proceed to prove the second statement, which bounds the number of function evalua-
tions in the first k gradient steps. In a single step, Algorithm 1 makes one initial function evaluation
(to compute f(xk − Tk∇f(xk))), then one additional function evaluation per iteration of each of
the two While loops. Let p be the number of iterations of the first While loop and q be the number
of iterations of the second While loop. Then we can write tk = Tkβ

q−p ≤ ta.
Consider two cases for a given step k > 1. In the first case, Tk > ta, so p = 0. Then

q ≤ logβ(
ta
Tk
).

In the second case, Tk ≤ ta and Tkβ1−p ≤ ta, so p ≤ 1 + logβ(
Tk
ta
). Since we still have

Tkβ
q−p ≤ ta,

q ≤ logβ

(
taβ

p

Tk

)
≤ logβ

(
taβ

1+logβ(Tk/ta)

Tk

)

≤ logβ

(
taβ

Tk
ta

Tk

)
= 1

We can then combine these two cases to conclude that the total number of function evaluations
in step k > 1 of Algorithm 1 is

nk = p+ q + 1 ≤ max

(
1 + logβ

(
ta
Tk

)
, 2 + logβ

(
Tk
ta

))
For all k ≥ 1:

Tk+1 = β−1tk

∈ [ta, β
−1ta] (Invariant 1)

∈
[
1

L
,

1

βm

]
(Lemma 18)

Using this range for Tk (for k > 1) and Lemma 18):

nk ≤ max

(
1 + logβ

(
ta
Tk

)
, 2 + logβ

(
Tk
ta

))
≤ max

(
1 + logβ

(
1

LTk

)
, 2 + logβ(mTk)

)
≤ max

(
1 + logβ

(
βm

L

)
, 2 + logβ

(m
L

))
= 2 + logβ

(m
L

)

17
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Finally, the total number of function evaluations in the first k steps is:

Nk =
k∑
i=0

ni

≤ 1 + max

(
1 + logβ

(
ta
T1

)
, 2 + logβ

(
T1
ta

))
+

k∑
i=2

(
2 + logβ

(m
L

))
≤ 1 + max

(
2 + logβ

(
1

LT0

)
, 1 + logβ(mT0)

)
+ (k − 1)

(
2 + logβ

(m
L

))
= 2 +max

(
logβ

(
β

LT0

)
, logβ(mT0)

)
+ (k − 1)

(
2 + logβ

(m
L

))
= k

[
2 + logβ

(m
L

)]
+max

(
logβ

(
β

mT0

)
, logβ(LT0)

)

5.5. Approximately exact line search

Proof [of Invariant 5] We start with some notation and observations. With Tk as the initial step size
of Algorithm 2 starting from xk, let t1 be the step size after the first While loop, t2 = βt1 be the
step size immediately prior to the second While loop, and t3 be the final step size upon exiting the
second While loop. Let g(s) = f(xk−s∇f(xx)), the value of f evaluated along the direction of the
negative gradient. Since f is convex, so is g. Let t∗ = argmint f(xk− t∇f(xk)) = argmins g(s),
a step size used in exact line search starting from xk. We can observe (using convexity of g and the
definition of t∗) that g(s) is nonincreasing for s ∈ [0, t∗) and g(s) is nondecreasing for s ∈ (t∗,∞).
If t∗ is not unique, then the present invariant may be taken as showing that ∃ some t∗ that satisfies
the relevant conditions.

We begin by showing that t1 ≥ t∗. Consider the first While loop. One of the following must be
true:

1. g(Tk) ≥ g(0), in which case we do not enter the first While loop at all, so t1 = Tk.

2. g(t1) ≥ g(βt1).

In either case, g(s) is nondecreasing at s = t1, so t1 ≥ t∗.
We now proceed to prove the present invariant, that t3 ∈ [β2t∗, t∗]. Let p be the number of times

the second While loop executes, so t3 = βpt2 = βp+1t1. Since t1 ≥ t∗, t3 ≥ βp+1t∗. One of the
following must be true:

1. p = 0, in which case g(βt1) ≥ g(t1), so g(s) is nonincreasing at s = βt1. Therefore
t∗ ≥ βt1 = t3. Since t1 ≥ t∗, we have that βt∗ ≤ t3 ≤ t∗, a stricter bound than required for
the present invariant.

2. p ≥ 1: From the conditions of the second While loop, which executes at least once, we
have that g(βp+1t1) ≥ g(βpt1) and g(βkt1) < g(βk−1t1) ∀k = 1, 2, ..., p. This implies
that g(s) is nonincreasing at s = βp+1t1 and nondecreasing at s = βp−1t1. Therefore,
βp+1t1 ≤ t∗ ≤ βp−1t1. Since t3 = βp+1t1, we have that t3 ≤ t∗ ≤ β−2t3, proving the
present invariant.

18
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Proof [of Theorem 6] Let tk be the step size used by Algorithm 2 in step k, ta be the step size that
would satisfy the Armijo condition with equality in step k, and t∗ be the step size that would be
used in an exact line search in step k. We begin with the observation that

f(xk − tk∇f(xk)) ≤ max(f(xk)−
tk
2
‖∇f(xk)‖2, f(xk)−

ta
2
‖∇f(xk)‖2)

which holds because one of the following cases must be true:

1. tk > ta: In this case, by construction it must be that f(xk−tk∇f(xk)) ≤ f(xk−ta∇f(xk)) =
f(xk)− ta

2 ‖∇f(xk)‖
2.

2. tk ≤ ta: In this case, by definition tk satisfies the Armijo condition: f(xk − tk∇f(xk)) ≤
f(xk)− tk

2 ‖∇f(xk)‖
2.

Combining this observation with Invariant 5, we have that

f(xk − tk∇f(xk)) ≤ max

(
f(xk)−

β2t∗
2
‖∇f(xk)‖2, f(xk)−

ta
2
‖∇f(xk)‖2

)
,

Therefore,

f(xk)− f(xk+1) ≥ min

(
β2t∗
2
,
ta
2

)
‖∇f(xk)‖2

From here, we can apply Lemma 18:

f(xk)− f(xk+1) ≥ min

(
β2t∗
2
,
1

2L

)
‖∇f(xk)‖2

Rearranging this, we have:

‖∇f(xk)‖2 ≤
2L

min(β2Lt∗, 1)
(f(xk)− f(xk+1))

Proposition 24 In each step of Algorithm 2, the first While loop terminates (finding t1) after at
most dlogβ(T0t∗ )e+ + 1 iterations.
Proof t1 = β−kT0 ≥ t∗, where the first While loop executed k times. Rearranging, we can see
that dlogβ(T0t∗ )e+ satisfies the inequality (where the ceiling and + are required to handle the cases
where T0 > t∗ and T0 ≤ t∗). The +1 is necessary because in some cases β−k+1T0 ≥ t∗, but in
such cases we still have that β−k+2T0 ≤ t∗.

Proposition 25 In each step of Algorithm 2, the second While loop executes at most dlogβ( t∗T0 )e++
1 times.
Proof There are two cases:
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1. The first While loop executed at least twice: In this case, the second While loop executes
exactly once (satisfying the proposition).

2. The first While loop executed no more than once: In this case, we have that αT0 > t∗. The
starting value for the second While loop is no more than T0. Then the second While loop
executes at most dlogβ( t∗T0 )e+ + 1 times (using the same reasoning as in Proposition 24).

Combining these cases completes the proof.

Proof [of Theorem 7] We begin by proving the first statement, which bounds the number of steps.

‖∇f(xk)‖2 ≤
2L

min(β2Lt∗, 1)
(f(xk)− f(xk+1))

≤ 2m

β2(1−
√
1−m/L)

(f(xk)− f(xk+1)) (Lemma 19)

Combining this with Lemma 15, we have that:

2m[f(xk)− f∗] ≤
2m

β2(1−
√
1−m/L)

(f(xk)− f(xk+1))

⇒ f(xk)− f∗ ≤
1

β2(1−
√
1−m/L)

((f(xk)− f∗)− (f(xk+1)− f∗))

⇒ f(xk+1)− f∗ ≤ [1− β2(1−
√
1−m/L)](f(xk)− f∗)

Applying this relation iteratively,

f(xk)− f∗ ≤ [1− β2(1−
√

1−m/L)]k(f(x0)− f∗)

≤ L[1− β2(1−
√
1−m/L)]k‖x0 − x∗‖2

where the last step follows from convexity and Lipschitz gradient. To achieve optimality gap ε, we
therefore need

k ≤ 1

β2
(
1−

√
1− m

L

) log(L‖x0 − x∗‖2
ε

)
.

steps (using Corollary 17).
We now proceed to prove the second statement, which bounds the number of function evalu-

ations needed for the first k steps. Let Tk denote the step size at the beginning of the kth step of
Algorithm 2, and tk denote the step size used in the kth step. Let t∗ denote the step size (in step k)
that would be used in an exact line search.

Combining Propositions 24 and 25, we have that

nk ≤ 4 + logβ

(
min

(
Tk
t∗
,
t∗
Tk

))
≤ 4 + logβ

(
min

(
mTk

1 +
√
1−m/L

,
1−

√
1−m/L
mTk

))
(Lemma 19)
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In particular,

n1 ≤ 4 + logβ

(
min

(
mT1

1 +
√
1−m/L

,
1−

√
1−m/L
mT1

))

≤ 4 + logβ

(
min

(
mT0

β(1 +
√
1−m/L)

,
β(1−

√
1−m/L)

mT0

))

For k > 1, Tk = β−1tk−1 ∈ [βt∗, β
−1t∗] by Invariant 5. Combining this with Lemma 19, for k > 1

we have that Tk ∈
[
β
m(1−

√
1−m/L), 1

βm(1 +
√
1−m/L)

]
. Therefore,

nk>1 ≤ 5 + logβ

(
1−

√
1−m/L

1 +
√
1−m/L

)

Summing over the k steps:

Nk =

k∑
i=0

ni

= 1 + n1 +
k∑
i=2

ni

= logβ

(
min

(
mT0

β(1 +
√
1−m/L)

,
β(1−

√
1−m/L)

mT0

))

+ 5k + (k − 1) logβ

(
1−

√
1−m/L

1 +
√
1−m/L

)

= k

(
5 + logβ

(
1−

√
1−m/L

1 +
√

1−m/L

))

+ logβ

(
min

(
mT0

β(1−
√
1−m/L)

,
β(1 +

√
1−m/L)

mT0

))
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