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Abstract
It is well known that the standard greedy algorithm guarantees a worst-case approximation factor of
1− 1/e when maximizing a monotone submodular function under a cardinality constraint. However,
empirical studies show that its performance is substantially better in practice. This raises a natural
question of explaining this improved performance of the greedy algorithm. In this work, we define
sharpness for submodular functions as a candidate explanation for this phenomenon. The sharpness
criterion is inspired by the concept of strong convexity in convex optimization. We show that the
greedy algorithm provably performs better as the sharpness of the submodular function increases.
This improvement ties closely to the faster convergence rates of the first order methods for strongly
convex functions. Finally, we perform a computational study to empirically support our theoretical
results.

1. Introduction
During the last decade, the interest in constrained submodular maximization has increased signifi-
cantly, especially due to its numerous applications in real-world problems. Common examples of
these applications are influence modeling in social networks [9], sensor placement [13], document
summarization [16], or in general constrained feature selection [5, 11, 14, 15, 24]. To illustrate the
submodular property, consider a simple example of selecting the most influential set of nodes S in
a social network where information is seeded at S and is passed around in the network based on
certain stochastic process. Submodularity naturally captures the property that the total number of
nodes influenced marginally decreases as more nodes are seeded [9].

The most fundamental problem in submodular optimization is to maximize a monotonically
increasing submodular function subject to a cardinality constraint. It is well known that this problem
is NP-hard to solve exactly. Therefore, most of the literature has focused on designing algorithms
with provable guarantees. A natural approach is the standard greedy algorithm which constructs a set
by adding in each iteration the element with the best marginal value while maintaining feasibility [21].
A classical result shows that the greedy algorithm achieves the best possible multiplicative (1− 1/e)-
approximation [20, 21]. However, empirical observations have shown that the greedy algorithm
performs considerably better in practice. Are there specific properties in real world instances that
the greedy algorithm exploits? An attempt to explain this phenomenon has been made with the
concept of curvature [4], which measures how close to be linear is the objective function. This line
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of work establishes a (best possible) approximation ratio of 1− γ/e using curvature γ ∈ [0, 1] as
parameter [26]. An alternative explanation can be found in the work of Chatziafratis et al. [3] who
define submodular stability. The authors study those instances in which a unique optimal solution
remains unique under multiplicative perturbations of the objective function.

In this work, we focus on giving an explanation to those instances in which the optimal solution
clearly stands out over the rest of feasible solutions. For this, we consider the concept of sharpness
initially presented in continuous optimization [17] and we adapt it to submodular optimization.
Sharpness in continuous optimization translates in faster convergence rates. Equivalently, we will
show that in submodular maximization the greedy algorithm performs better as the sharpness of the
objective function increases. Our main contributions in this work are: (1) to introduce the sharpness
criteria in submodular optimization as a novel candidate explanation of the performance of the greedy
algorithm; (2) to show that the standard greedy algorithm automatically adapt to the sharpness of the
objective function, without requiring this information as part of the input; (3) to provide provable
guarantees that depend on the sharpness parameters for this algorithm; and (4) to empirically support
our theoretical results with real-world applications.

1.1. Problem Formulation

In this work, we study the submodular function maximization problem subject to a single cardinality
constraint. Formally, consider a ground set of n elements V = {1, . . . , n} and a non-negative
set function f : 2V → R+. We denote the marginal value for any subset A ⊆ V and e ∈ V by
fA(e) := f(A + e) − f(A), where A + e := A ∪ {e}. A set function f is submodular if, and
only if, it satisfies the diminishing returns property. Namely, for any e ∈ V and A ⊆ B ⊆ V \{e},
fA(e) ≥ fB(e). We say that f is monotone if for any A ⊆ B ⊆ V , we have f(A) ≤ f(B). For
simplicity, let us assume that f(∅) = 0. Given k ∈ Z+ and a non-negative monotone submodular
function f , we focus on the following optimization problem:

max{f(S) : |S| ≤ k}. (P1)

We denote the optimal value as OPT. In this context, we assume the value oracle model, i.e., the
decision-maker queries the value of S and the oracle returns f(S). As we mentioned earlier, to
explain the improved performance of the greedy algorithm, we borrow the concept of sharpness
used in continuous optimization [1, 7, 17, 18, 23]. Broadly speaking, this property characterizes the
behavior of a function around the set of optimal solutions. Sharpness has been widely used to study
convergence rates in convex and non-convex optimization, see e.g. [2, 8, 10, 22, 25]. For a detailed
review on the sharpness condition in continuous optimization, we refer the interested reader to [25].

1.2. Our Contributions and Results

Our main contribution is to introduce the concept of submodular sharpness and show that the greedy
algorithm performs better than the worst-case guarantee 1− 1/e for functions that are sharp with
appropriate parameters.

Given parameters c ≥ 1 and θ ∈ [0, 1], we define submodular sharpness as follows.

Definition 1 (Submodular Sharpness) A non-negative monotone submodular function f : 2V →
R+ is said to be (c, θ)-sharp, if there exists an optimal solution S∗ for Problem (P1) such that for
any subset S ⊆ V with |S| ≤ k the function satisfies∑

e∈S∗\S

fS(e) ≥
( |S∗\S|

k · c

) 1
θ

·OPT . (1)
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The property can be interpreted as implying that the optimal set S∗ is not just unique but any solution
which differs significantly from S∗ has substantially lower value. Our first main result for Problem
(P1) is stated in the next theorem.

Theorem 2 Consider a non-negative monotone submodular function f : 2V → R+ which is
(c, θ)-sharp. Then, the greedy algorithm returns a feasible set Sg for (P1) such that

f(Sg) ≥
[

1−
(

1− θ

c

) 1
θ

]
· f(S∗).

We remark that any monotone submodular function f is (c, θ)-sharp as c← 1 and θ ← 0 (Lemma
5 in the Appendix). Thus, Theorem 2 implies that the greedy algorithm gives a 1− 1

e -approximation
for any monotone submodular function recovering the classical guarantee [21]. But if the parameters
are bounded away from (1, 0), we obtain a strict improvement over this worst case guarantee. In
Section 3, we show experimental results to illustrate that real data sets do show improved parameters.

1.2.1. DYNAMIC SHARPNESS

Definition 1 can be considered as a static notion of sharpness, since parameters c and θ do not change
with respect to the size of S. We generalize this definition by considering the notion of dynamic
sharpness, in which the parameters c and θ depend on the size of the feasible sets, i.e., c|S| ≥ 1 and
θ|S| ∈ [0, 1].

Definition 3 (Dynamic Submodular Sharpness) A non-negative monotone submodular function
f : 2V → R+ is said to be dynamic (c, θ)-sharp, where c = (c0, c1, . . . , ck−1) ∈ [1,∞)k and
θ = (θ0, θ1, . . . , θk−1) ∈ [0, 1]k, if there exists an optimal solution S∗ for Problem (P1) such that for
any subset S ⊆ V with |S| ≤ k the function satisfies

∑
e∈S∗\S

fS(e) ≥
( |S∗\S|
k · c|S|

) 1
θ|S| · f(S∗)

In other words, we say that a function f is (ci, θi)-sharp for any subset such that |S| = i, where
i ∈ {0, . . . , k − 1}. Note that since we have k pairs of parameters (ci, θi), then there are at most
k − 1 intervals in which sharpness may change. If the parameters are identical in each interval, then
we recover Definition 1 of submodular sharpness. We obtain the following guarantee for dynamic
sharpness.

Theorem 4 Consider a non-negative monotone submodular function f : 2V → R+ that is dynamic
(c, θ)-sharp with parameters c = (c0, c1, . . . , ck−1) ∈ [1,∞)k and θ = (θ0, θ1, . . . , θk−1) ∈ [0, 1]k.
Then, the greedy algorithm returns a set Sg for (P1) such that

f(Sg) ≥
[

1−
(((

1− θ0
c0k

) θ1
θ0 − θ1

c1k

) θ2
θ1 − · · · − θk−1

ck−1k

) 1
θk−1

]
· f(S∗).

Due to space constraints, we provide the proofs of Theorem 2 and Theorem 4 in the Appendix.
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2. Contrasting Sharpness with Curvature
A natural question is how our results compare to the curvature analysis proposed in [4]. Specifically,
is there any class of functions in which the sharpness criterion provides considerable better guarantees
than the curvature analysis? The total curvature of a monotone submodular function f : 2V → R+

is defined as γ = 1 −mine∈V ∗{fV−e(e)/f(e)}, where V ∗ = {e ∈ V : f(e) > 0}. Conforti and
Cornuéjols [4] proved that if a monotone submodular function has curvature γ ∈ [0, 1], then the
standard greedy algorithm guarantees a (1− e−γ)/γ fraction of the optimal value. Let us contrast
the two concepts. Consider an integer k ≥ 2, a ground set V = [n] with n = 2k, a monotone
submodular set function f(S) = min{|S|, k+ 1} and problem (P1). Observe that any set of size k is
an optimal set, so consider S∗ any set with k elements. Note also that the curvature of the function is
γ = 1, since f(V ) = k + 1 and f(V − e) = k + 1 for any e ∈ V . Therefore, the curvature analysis
guarantees a 1− 1/e factor. Let us analyze the sharpness of this function. Pick any subset S ⊆ V
such that |S| ≤ k and S 6= S∗, then we have f(S) = |S| and fS(e) = 1 for any e ∈ S∗\S. Hence,∑

e∈S∗\S fS(e)

f(S∗)
=
|S∗\S|
k

,

which implies that parameters θ = 1 and c = 1 are feasible in the sharpness inequality (1). Therefore,
the sharpness analysis gives us an approximation factor of 1. From this simple example, we observe
that curvature is a global parameter of the function that does not take into consideration the optimal
set and can be easily perturbed, while the sharpness criterion focuses on the behavior of the function
around the optimal solution. More precisely, take any function f with curvature close to 0, which
means an approximation guarantee close to 1. Then, take f̃(S) = min{f(S), f(S∗)}. This function
is still monotone and submodular, but its curvature now is 1, while its sharpness is the same as the
original function f .

3. Experimental Results
In this section, we provide a computational study of the sharpness criterion in real-world applications.
We aim to explicitly obtain the sharpness parameters of the objective function for different small
ground sets. With these results, we will empirically show how the approximation factors vary with
respect to the cardinality budget k. We contrast these results with the approximation ratios guaranteed
by the curvature analysis [4] and submodular stability [3]. We also analyze the concept of dynamic
sharpness: either with 1 or k − 1 intervals. We will observe that the approximation factors are
considerable improved compared to the static sharpness results. We provide extra computational
studies in the Appendix.

3.1. Non-parametric Learning

For this application we follow the setup in [19]. Let XV be a set of random variables corresponding
to bio-medical measurements, indexed by a ground set of patients V . We assume XV to be a
Gaussian Process (GP), i.e., for every subset S ⊆ V , XS is distributed according to a multivariate
normal distribution N (µS ,ΣS,S), where µS = (µe)e∈S and ΣS,S = [Ke,e′ ]e,e′∈S are the prior
mean vector and prior covariance matrix, respectively. The covariance matrix is given in terms of
a positive definite kernel K, e.g., a common choice in practice is the squared exponential kernel
Ke,e′ = exp(−‖xe − xe′‖22/h). Most efficient approaches for making predictions in GPs rely on
choosing a small subset of data points. For instance, in the Informative Vector Machine (IVM) the goal
is to obtain a subset A such that maximizes the information gain, f(A) = 1

2 log det(I +σ−2 ΣA,A),
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which is monotone and submodular [12]. In our experiment, we use the Parkinson Telemonitoring
dataset [27] consisting of a total of 5, 875 patients with early-stage Parkinson’s disease and the
corresponding bio-medical voice measurements with 22 attributes (dimension of the observations).
We normalize the vectors to zero mean and unit norm. With these measurements we computed the
covariance matrix Σ considering the squared exponential kernel with parameter h = 0.75. For the
objective function we consider σ = 1. As we mentioned before, the objective in this application is to
select the k most informative patients. The objective function in this experiment is highly non-linear
which makes difficult to obtain the sharpness parameters. Therefore, for this experiment we consider
different small random instances with n = 2k where k = {5, . . . , 10}. In Figure 1 (a), we plot the
variation of the approximation factors with respect to different values of k. The best approximation
factor is obtained when using the general dynamic sharpness approach, which clearly outperforms the
curvature analysis. Observe that the best approximation factor obtained by considering one moment
in which the sharpness change (blue) also improves the curvature analysis. We also plot the ratios
obtained by the greedy solution and we observe that most of the time it is close to 1.

3.2. Movie Recommendation

For this application we consider the MovieLens data-set [6] which consists of 7,000 users and 13,977
movies. Each user had to rank at least one movie with an integer value in {0, . . . , 5} where 0 denotes
that the movies was not ranked by that user. Therefore, we have a matrix [rij ] of rankings for each
user i and each movie j. The objective in this application is to select the k highest ranked movies
among the users. To make the computations less costly in terms of time, we use only m = 1000
users. In the same spirit, we will choose a small number n from the 13,977 movies.

In this section, we consider the facility-location function f(S) = 1
m

∑
i∈[m] maxj∈S rij . This

function is known to be non-negative, monotone, and submodular. Most of the time this function is
not submodular stable [3] since it has multiple optimal solutions. It is not clear how to efficiently
obtain the sharpness parameters of this function, therefore for this experiment, we consider different
small random instances with n = 2k where k = {5, . . . , 10}. In Figure 1 (b), we plot the variation
of the approximation factors with respect to different values of k. We observed that the greedy
algorithm (orange) always finds an optimal solution. We note that the curvature analysis does not
provide a good approximation ratio. Instead, we obtain a considerable improvement if we use the
general dynamic sharpness approach.
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Figure 1: Variations in the approximation factors with respect to different budgets k: Non-parametric
learning (a) and Facility-location function (b).
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Appendix A. Appendix
A.1. Remaining Proofs

Lemma 5 Consider any monotone submodular set function f : 2V → R+. Then,

1. There is always a set of parameters c and θ such that f is (c, θ)-sharp. In particular, f is
always (c, θ)-sharp when both c→ 1 and θ → 0.

2. If f is (c, θ)-sharp, then for any c′ ≥ c and θ′ ≤ θ, f is (c′, θ′)-sharp. Therefore, in order to
maximize the guarantee of Theorem 2 we look for the smallest c and the largest θ.

3. Inequality (1) needs to be checked only for sets of size exactly k.

Proof

1. Note that |S
∗\S|
k ≤ 1, so

(
|S∗\S|
k·c

) 1
θ ≤

(
1
c

) 1
θ , which shows that

(
|S∗\S|
k·c

) 1
θ → 0 when c→ 1

and θ → 0. Therefore, Definition 1 is simply
∑

e∈S∗\S fS(e) ≥ 0, which is satisfied since
from monotonicity we have fS(e) ≥ 0.

2. Observe that
(
|S∗\S|
k·c

) 1
θ as a function of c and θ is increasing in θ and decreasing in c.

Therefore,
(
|S∗\S|
k·c

) 1
θ ≥

(
|S∗\S|
k·c′

) 1
θ′ for c′ ≥ c and θ′ ≤ θ.

3. Given that f is submodular, then fA(e) ≥ fB(e) for any e ∈ V and A ⊆ B ⊆ V \e, so in (1)
we can assume without loss of generality that |S| = k.

We are ready to prove Theorem 2. We emphasize that the greedy algorithm automatically adapts
to the sharpness of the function and does not require explicit access to the sharpness parameters in
order to obtain the desired guarantees. For completeness, let us recall the standard greedy algorithm.

Algorithm 1: Greedy [21]
Input: ground set V = {1, . . . , n}, monotone submodular function f : 2V → R+, and k ∈ Z+.
Output: feasible set S with |S| ≤ k.

1: Initialize S = 0.
2: while |S| < k do
3: S ← S + argmaxe∈V \S fS(e)
4: end while

8
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Recall that given parameters c ≥ 1 and θ ∈ [0, 1], a function is (c, θ)-sharp if there exists an
optimal set S∗ such that for any set S with at most k elements, then

∑
e∈S∗\S

fS(e) ≥
( |S∗\S|

k · c

) 1
θ

· f(S∗)

Proof [Proof of Theorem 2] Let us denote by Si the set we obtain in the i-th iteration of Algorithm 1.
Note that Sg := Sk. By using the properties of the function f , we can obtain the following sequence
of inequalities

f(Si)− f(Si−1) =

∑
e∈S∗\Si−1

f(Si)− f(Si−1)

|S∗\Si−1|
(2)

≥
∑

e∈S∗\Si−1
fSi−1(e)

|S∗\Si−1|
(choice of greedy)

Now, from the sharpness condition we know that

1

|S∗\Si−1|
≥ f(S∗)θ

kc
·

 ∑
e∈S∗\Si−1

fSi−1(e)

−θ

so we obtain the following bound

f(Si)− f(Si−1) ≥
f(S∗)θ

kc
·

 ∑
e∈S∗\Si−1

fSi−1(e)

1−θ

(sharpness)

≥ f(S∗)θ

kc
· [f(Si−1 ∪ S∗)− f(Si−1)]

1−θ (submodularity)

≥ f(S∗)θ

kc
· [f(S∗)− f(Si−1)]

1−θ. (monotonicity)

Therefore, we need to solve the following recurrence

ai ≥ ai−1 +
aθ

kc
· [a− ai−1]1−θ (3)

where ai = f(Si), a0 = 0 and a = f(S∗).
Define h(x) = x+ aθ

kc · [a−x]1−θ, where x ∈ [0, a]. Observe that h′(x) = 1− aθ(1−θ)
kc · [a−x]−θ.

Therefore, h is increasing in the interval I :=
{
x : 0 ≤ x ≤ a ·

(
1−

(
1−θ
kc

)1/θ)}
. Let us define

bi := a ·
[

1−
(

1− θ

c
· i
k

) 1
θ

]
.

First, let us check that bi ∈ I for all i ∈ {0, . . . , k}. Namely, for any i we need to show that

a ·
[

1−
(

1− θ

c
· i
k

) 1
θ

]
≤ a ·

(
1−

(
1− θ
kc

)1/θ
)

⇔ (kc− iθ) ≥ 1− θ

9
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The expression kc − iθ is decreasing on i. Hence, we just need the inequality for i = k, namely
k(c− θ) ≥ 1− θ, which is true since c ≥ 1 and k ≥ 1.

Our goal is to prove that ai ≥ bi, so by induction let us assume that ai−1 ≥ bi−1 is true (observe
a0 ≥ b0). By using monotonicity of h on the interval I , we get h(ai−1) ≥ h(bi−1). Also, observe
that recurrence (3) is equivalent to write ai ≥ h(ai−1) which implies that ai ≥ h(bi−1). To finish
the proof we will show that h(bi−1) ≥ bi.

Assume for simplicity that a = 1. For x ∈ [0, k], define

g(x) :=

(
1− θ

kc
· x
)1/θ

.

Note that g′(x) = − 1
kc · g(x)1−θ and g′′(x) = 1−θ

(kc)2
· g(x)1−2θ. Observe that g is convex, so for any

x1, x2 ∈ [0, k] we have g(x2) ≥ g(x1) + g′(x1) · (x2 − x1). By considering x2 = i and x1 = i− 1,
we obtain

g(i)− g(i− 1)− g′(i− 1) ≥ 0 (4)

On the other hand,

h(bi−1)− bi = 1−
(

1− θ

c
· i− 1

k

) 1
θ

+
1

kc
·
(

1− θ

c
· i− 1

k

) 1−θ
θ

− 1 +

(
1− θ

c
· i
k

) 1
θ

=

(
1− θ

c
· i
k

) 1
θ

−
(

1− θ

c
· i− 1

k

) 1
θ

+
1

kc
·
(

1− θ

c
· i− 1

k

) 1−θ
θ

which is exactly the left-hand side of (4), proving h(bi−1)− bi ≥ 0.
Finally,

f(Sg) = ak ≥ bk =

[
1−

(
1− θ

c

) 1
θ

]
· f(S∗),

proving the desired guarantee.

We recover the classical 1− 1/e approximation factor, originally proved in [21].

Corollary 6 The greedy algorithm achieves a 1− 1
e -approximation for any monotone submodular

function.

Proof We prove in Lemma 5 (see Appendix) that any monotone submodular function is (c, θ)-sharp

when θ → 0 and c → 1. On the other hand, we know that 1 −
(
1− θ

c

) 1
θ is increasing on θ, so

for all c ≥ 1 and θ ∈ [0, 1] we have 1 −
(
1− θ

c

) 1
θ ≥ 1 − e−1/c. By taking limits, we obtain

limc→1,θ→0 1−
(
1− θ

c

) 1
θ ≥ 1− e−1.

Let us denote by S(f) the sharpness feasible region for f , i.e., f is (c, θ)-sharp if, and only,
if (c, θ) ∈ S(f). We focus now on obtaining the best approximation guarantee for a monotone
submodular function with sharpness region S(f).

Proposition 7 Given a non-negative monotone submodular function f : 2V → R+ with sharpness

region S(f), then the highest approximation guarantee 1−
(
1− θ

c

) 1
θ for Problem (P1) is given by a

pair of parameters that lies on the boundary of S(f).

10
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Proof Fix an optimal solution S∗ for Problem (P1). Note that we can compute the best pair (c, θ)
for that S∗ by solving the following optimization problem

max 1−
(

1− θ

c

) 1
θ

(5)

s.t. (c, θ) ∈ S(f, S∗),

where S(f, S∗) corresponds to the sharpness region related to S∗. Observe that function 1−
(
1− θ

c

) 1
θ

is continuous and convex in [1,∞) × (0, 1]. Note that for any c ≥ 1, if θ → 0, then
(
1− θ

c

) 1
θ →

e−1/c. Also, for any subset S, Inequality (1) is equivalent to

|S∗\S|
k

·
(∑

e∈S∗\S fS(e)

OPT

)−θ
− c ≤ 0

where the left-hand side is convex as a function of c and θ, hence S(f, S∗) is a convex region.
Therefore, the optimal pair (c∗, θ∗) of Problem (5) lies on the boundary of S(f, S∗). Since we
considered an arbitrary optimal set, then the result easily follows.

Let us study S(f) for general monotone submodular functions. If we fix |S∗\S|, the right-hand
side of (1) does not depend explicitly on S. On the other hand, for a fixed size |S∗\S|, there is a
subset S` that minimizes the left-hand side of (1), namely∑

e∈S∗\S

fS(e) ≥
∑

e∈S∗\S`
fS`(e),

for all feasible subset S such that |S∗\S| = `. For each ` ∈ [k], let us denote

W (`) :=
∑

e∈S∗\S`
fS`(e). (6)

Therefore, instead of checking Inequality (1) for all feasible subsets, we only need to check k
inequalities defined by W (1), . . . ,W (k). In general, computing W (`) is difficult since we require
access to S∗. However, for very small instances or specific classes of functions, this computation can
be done efficiently.

A.1.1. DYNAMIC SHARPNESS

In this section, we focus on proving the main results for dynamic sharpness, Theorem 4. We
emphasize that the greedy algorithm automatically adapts to the dynamic sharpness of the function
without requiring parameters (ci, θi) as part of the input.
Proof [Proof of Theorem 4] Observe that in the i-th iteration of the greedy algorithm |Si| = i, so the
change of the sharpness parameters will occur in every iteration i. The proof is similar to Theorem 2,
but the recursion needs to be separated in each step i. Let us recall recursion (3): for any i ∈ [k]

ai ≥ ai−1 +
aθ

kci−1
· [a− ai−1]1−θi−1 ,

11
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where ai = f(Si), a0 = 0, and a = f(S∗). For simplicity assume that a = 1. We proceed the proof
by induction. Note that for i = 1 we need to prove that a1 ≥ 1

kc0
. For c0 and θ0, the sharpness

inequality (1) needs to be checked only for S = ∅, which is trivially satisfied with c0 = θ0 = 1.
From the proof of Theorem 2 we can conclude the following for i = 1.

a1 ≥
[

1−
(

1− θ0
kc0

) 1
θ0

]
,

and given that c0 = θ0 = 1 is valid pair of parameters, then this inequality is simply a1 ≥ 1
kc0

,
proving the desired base case. Let us denote

bj :=

[
1−

(((
1− θ0

c0k

) θ1
θ0 · · · − θj−2

cj−2k

)θj−1/θj−2

− θj−1
cj−1k

) 1
θj−1

]

for 1 ≤ j ≤ k. We assume that ai ≥ bi is true, and will prove that ai+1 ≥ bi+1. Similarly to the
proof of Theorem 2, we define h(x) := x+ 1

kci
[1− x]1−θi for x ∈ [0, 1], which is increasing in the

interval I :=

{
x : 0 ≤ x ≤ 1−

(
1−θi
kci

)1/θi}
. Let us prove that bi ∈ I . First, observe that bi ≥ 0.

For the other inequality in I we have

bi ≤ 1−
(

1− θi
kci

)1/θi

⇔
((

1− θ0
c0k

)θ1/θ0
. . .− θi−1

ci−1k

)θi/θi−1

≥ 1− θi
kci

,

which is satisfied for sufficiently large k.
Similarly than the proof of Theorem 2, for x ∈ [i, k] define

g(x) :=

(((
1− θ0

c0k

) θ1
θ0 · · · − θi−1

ci−1k

) θi
θi−1 − θi

cik
· (x− i)

) 1
θi

Note that g′(x) = − 1
kci
· g(x)1−θi and g′′(x) = 1−θi

(kci)2
· g(x)1−2θi . Observe that g is convex, so for

any x1, x2 ∈ [i, k] we have g(x2) ≥ g(x1) + g′(x1) · (x2 − x1). By considering x2 = i + 1 and
x1 = i, we obtain

g(i+ 1)− g(i)− g′(i) ≥ 0 (7)

Inequality (7) is exactly h(bi)− bi+1 ≥ 0, since g(i+1) = 1− bi+1 and g(i) = 1− bi. Finally, since
we assumed ai ≥ bi, then ai+1 ≥ h(ai) ≥ h(bi) ≥ bi+1, where the first inequality is the definition
of the recursion, the second inequality is due to the monotonicity of h in the interval I , and finally,
the last inequality was proven in (7). Therefore, ak ≥ bk which proves the desired guarantee since
f(Sg) = ak.

Observation 1 Note that we recover Theorem 2 when (ci, θi) = (c, θ) for all i ∈ {0, . . . , k − 1}.

12
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A.2. Computational Study

Before providing the algorithm to find the sharpness of a function we observe the following: in
Inequality (2) of the proof of Theorem 2, we divide by |S∗\Si−1| which is valid for iterations
i ∈ {1, . . . , k}. Specifically, in iteration i = k, we will divide by |S∗\Sk−1|, which later will be
replaced by the sharpness criterion. Note that |Sk−1| = k − 1, which implies that numerically it is
sufficient enough to have the sharpness criterion for subsets |S| ≤ k − 1. Moreover, equivalently to
Fact 3. in Lemma 5, we actually need to check sets of size exactly k − 1. In a similar way, when
we face two set of parameters (c, θ) and (c′, θ′), we apply the same logic for the switching moment
t ∈ [k]: we check only subsets of size exactly t− 1.

Simple search for sharpness parameters. Fix an optimal solution S∗. Compute W (`) for all
` ∈ [k] as described in (6). To find parameters (c, θ) we follow a simple search over the boundary
of S(f) defined by S∗. For c, we sequentially iterate over possible values in a fixed range [1, cmax]

(we consider granularity 0.01 and cmax = 3). Given c, we compute θ = min`∈[k]

{
log(kc/`)

log(OPT /W (`))

}
.

Once we have c and θ, we compute the corresponding approximation factor. If we improve we
continue and update c; otherwise, we stop. A similar procedure is done for the case of dynamic
sharpness.

A.2.1. MOVIE RECOMMENDATION: EXTRA RESULTS

We follow the same setup as in Section 3.2. In our first experiment, we consider the following
function f(S) =

(
1
m

∑
i∈[m]

∑
j∈S rij

)α
where α ∈ (0, 1]. We consider a random instance of

n = 2, 000 movies and we want to select k = 1, 000 movies. We take 10 different values for
α ∈ {0.1, 0.2, . . . , 1.0}. First, we noticed in our experiment that the instance is not submodular
stable [3] since it had multiple optimal solutions. In Figure 2 (a) we plot the variation of the
approximation factors with respect to different values of α. We observe that there is an α∗ in which
the curvature analysis improves the sharpness criterion. Below this α∗, the dynamic sharpness with
k − 1 switching points (magenta) clearly outperforms the curvature analysis; similarly, for the static
sharpness. We conclude that the curvature analysis is ideal when the objective function is closer to
be a linear function.

In the next experiment, we fix α = 0.8 and we consider different random instances with n = 2k,
where k = {50, 100, 200, 500, 800, 1000}. In Figure 2 (b) we plot the variation of the approximation
factors with respect to different k’s. We observe that the general dynamic sharpness outperforms the
curvature analysis for k sufficiently large. We also plot in blue the best approximation factor that can
be obtained by using a single switching moment. The results for this approach are significantly close
to the general dynamic sharpness.
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Figure 2: Concave over modular function: (a) variations in the approximation factors with respect
to different exponents α, (b) α = 0.8, variations in the approximation factors with respect
to different budgets k.
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