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Abstract

Momentum is a simple and popular technique in deep learning for gradient-based optimizers. We
propose a decaying momentum (DEMON) rule, motivated by decaying the total contribution of a
gradient to all future updates. Applying DEMON to Adam leads to significantly improved training,
notably competitive to momentum SGD with learning rate decay, even in settings in which adaptive
methods are typically non-competitive. Similarly, applying DEMON to momentum SGD rivals mo-
mentum SGD with learning rate decay, and in some cases leads to improved performance. DEMON
is trivial to implement and incurs limited extra computational overhead, compared to the vanilla
counterparts.

1. Introduction

Deep Neural Networks (DNNs) have drastically advanced the state-of-the-art performance in many
computer science applications, including computer vision [10, 19, 30], natural language processing
[1, 6, 24] and speech recognition [31, 33]. Yet, in the face of such significant developments, the age-
old stochastic gradient descent (SGD), and the accelerated variant SGD with momentum (SGDM),
algorithm remains one of the most, if not the most, popular method for training DNNs [9, 38, 42].

Adaptive methods [5, 11, 17, 23, 46] sought to simplify the training process, while providing
similar performance. However, while they are often used by practitioners, there are cases where their
use leads to a performance gap [34, 42]. At the same time, much of the state-of-the-art performance
on highly contested benchmarks—such as the image classification dataset ImageNet—have been
produced with SGDM [10, 13, 14, 19, 30, 43, 45].

Nevertheless, a key factor in any algorithmic success still lies in hyperparameter tuning. For
example, in the literature above, they obtain such performance with a well-tuned SGD with momen-
tum and a learning rate decay schedule, or with a proper hyperparameter tuning in adaptive methods.
Slight changes in learning rate, learning rate decay, momentum, and weight decay (amongst oth-
ers) can drastically alter performance. Hyperparameter tuning is arguably one of the most time
consuming parts of training DNNs, and researchers often resort to a costly grid search. Thus, find-
ing new and simple hyper-parameter tuning routines that boost the performance of state of the art
algorithms is of ultimate importance and one of the most pressing problems in machine learning.

The focus of this work is on the momentum parameter and how we can boost the performance
of training methods with a simple technique. Momentum helps speed up learning in directions of
low curvature, without becoming unstable in directions of high curvature. Minimizing the objective
function L(-), the simplest and most common momentum method, SGDM, is given by the following
recursion for variable vector 8; € RP:

Orr1 = 0y + g, v = Bog1 — gs.
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The coefficient S—traditionally, selected constant in [0, 1]—controls how quickly the momentum
decays, g; represents a stochastic gradient, usually E[g;] = VL(0;), and 7 > 0 is the step size.

But how do we select 5? The most prominent choice among practitioners is 5 = 0.9. This
is supported by recent works that prescribe it [2, 11, 17, 29], and by the fact that most common
softwares, such as PyTorch [28], declare 8 = 0.9 as the default value in their optimizer implemen-
tations. However, there is no indication that this choice is universally well-behaved.

In this work, we introduce a novel momentum decay rule which significantly surpasses the
performance of both Adam and SGDM (as they are used currently), in addition to other state-of-
the-art adaptive learning rate and adaptive momentum methods, across a variety of datasets and
networks. In particular, our findings can be summarized as follows:

i) We propose a new momentum decay rule, motivated by decaying the total contribution of a
gradient to all future updates, with limited overhead and additional computation.
i1) Using the momentum decay rule with Adam, we observe large performance gains—relative
to vanilla Adam—where the network continues to learn for far longer after Adam begins to
plateau, and suggest that the momentum decay rule should be used as default for this method.
ii1) We observe comparative performance for SGDM between momentum decay and learning rate
decay; an interesting result given the unparalleled effectiveness of learning rate decay schedule.

Experiments are provided on various datasets, including MNIST, CIFAR-10, CIFAR-100, STL-
10, Penn Treebank (PTB), and networks, including Convolutional Neural Networks (CNN) with
Residual architecture (ResNet) [10], Wide Residual architecture (Wide ResNet) [45], Non-Residual
architecture (VGG-16) [35], Recurrent Neural Networks (RNN) with Long Short-Term Memory
architecture (LSTM) [12], Variational AutoEncoders (VAE) [18], and the recent Noise Conditional
Score Network (NCSN) [36].

2. DEMON: Decaying momentum algorithm

Algorithm 1 DEMON in SGDM Algorithm 2 DEMON in Adam

1: Parameters: # of iterations T, step size 7,
momentum initial value Bip, B2, ¢ = 1075,

2: vy = 0y = EJ°Y = 0, otherwise randomly

1: Parameters: # of iterations 7', step size 7,
momentum initial value Bini.

2: vy = 6; = 0, otherwise randomly initialized. Ut = |
3 fort=20..... T do initialized.
' (1_%) 3: fort=0,...,7 do
4: 3¢ = Binit - 1-4
Be = P (1= Binic) +Binit (1~ %) 4: By = Bigit - —— ( 'T) :
5 i1 = 0t — ngt + Broy o0 U‘g-ﬁ*gf‘“)*d‘mh(l—?)
6: ’Ut—{—l == ,Bf'l)t — 7]91‘ 5: £t+l - 782 . Et + (1 - .62) : (gt o gl‘)
7. end for 6: My = G + BemMe—14
7 Ory1,0 =00 — \/ﬁ “My i
8: end for

Motivation and interpretation. DEMON is motivated by learning rate rules: by decaying the mo-
mentum parameter, we decay the total contribution of a gradient to all future updates. Similar rea-
soning applies for learning rate decay routines: however, our goal here is to present a concrete and
easy-to-use momentum decay procedure, which can be used with or without learning rate routines,
as we show in the experimental section. The key component is the momentum decay schedule:

B = B o) (1)

1= Binit) +Binit (1— % )
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The interpretation of this rule comes from the following argument: Assume fixed momentum
parameter 3; = 3; e.g., 8 = 0.9, as literature dictates. For our discussion, we will use the acceler-
ated SGD recursion. We know that vg = 0, and vy = Svi_1 — 1gs—1. Then, the main recursion can
be unrolled into:

t
011 = 0 — nge — Bgi—1 — B g2 +nB’vio = =0 —ngr —n- Z (ﬁl : gt—i)
i=1

Interpreting the above recursion, a particular gradient term g, contributes a total of 1y, B° of its
“energy” to all future gradient updates. Moreover, for an asymptotically large number of iterations,
we know that /3 contributes on up to ¢ —1 terms. Then, > io, ' = 3> .22, 3° = 3/(1— ). Thus, in
our quest for a decaying schedule and for a simple linear momentum decay, it is natural to consider
a scheme where the cumulative momentum is decayed to 0. Let Sin;; be the initial 3; then at current
step ¢ with total 7 steps, we design the decay routine such that: 5/(1—08) = (1—t/T") Binit/ (1— Binit)-
This leads to equation 1.

Connection to other algorithms. DEMON introduces an implicit discount factor. The main re-
cursions of the algorithm are the same with standard algorithms in machine learning. E.g., for
B¢ = B = 0.9 we obtain SGD with momentum, and for 3 = 0 we obtain plain SGD in Algorithm 2;
in Algorithm 2, for 8; = 0.9 with a slightly adjustment of learning rate we obtain Adam, while for
B1 = 0 we obtain a non-accumulative AdaGrad algorithm. We choose to apply DEMON to a slightly
adjusted Adam—instead of vanilla Adam—to isolate the effect of the momentum parameter, since
the momentum parameter adjusts the magnitude of the current gradient as well in vanilla Adam.
Efficiency. DEMON requires only limited extra overhead and computation in comparison to the
vanilla counterparts, for the computation of ;.

Practical suggestions. For settings in which Gj; is typically large, such as image classification,
we advocate for decaying momentum from Siyic at t = 0, to 0 at ¢ = T" as a general rule. We also
observe and report improved performance by delaying momentum decay till later epochs. In many
cases, performance can be further improved by decaying to a small negative value, such as 0.3.

3. Related work

There are numerous techniques for automatic hyperparameter tuning. The most widely used are
learning rate adaptive methods, starting with AdaGrad [5], AdaDelta [46], RMSprop [11], and
Adam [17]. Adam [17], the most popular, introduced a momentum term, which is combined with
the current gradient before multiplying with an adaptive learning rate. Interest in closing the gener-
alization difference between adaptive methods and SGDM led to AdamW [21], by fixing the weight
decay of Adam, and Padam [3], by lowering the exponent of the second moment.

Asynchronous methods are commonly used in deep learning, and [25] show that running SGD
asynchronously is similar to adding a momentum-like term to SGD without assumptions of con-
vexity of the objective function. YellowFin [47] is a learning rate and momentum adaptive method
for both the synchronous and asynchronous setting motivated by a quadratic model analysis and
robustness insights.

There is substantial research, both empirical and theoretical, into the convergence of momentum
methods [16, 39—41]. In addition, [38] explored momentum schedules, with even increasing mo-
mentum schedules during training, inspired by Nesterov’s routines for convex optimization. There
is some work into reducing oscillations during training, by adapting the momentum [27]. There is
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also work into adapting momentum in well-conditioned convex problems as opposed to setting to
zero [37]. Another approach in this area is to keep several momentum vectors according to different
(£ and combining them [22]. We are aware of the theoretical work of [44] which prove under certain
conditions that momentum SGD is equivalent to SGD with a rescaled learning rate, however our
experiments in the deep learning setting show slightly different behavior and understanding why is
an exciting direction of research.

Smaller values of 3 have gradually been employed for Generative Adversarial Networks (GAN),
and recent developments in game dynamics [8] show a negative momentum is helpful for GANs.

4. Experiments

We separate experiments into those with adaptive learning rate and those with adaptive momentum.
We report improved performance by delaying the application of DEMON where applicable, and
report performance across different number of total epochs to demonstrate effectiveness regardless
of the training budget. Note that the predefined number of epochs run affects the proposed decaying
momentum routine, by definition of 3;. We run 5 seeds.

4.1. Adaptive methods

At first, we apply DEMON Adam (Algorithm 2) to a variety of models and tasks. We select vanilla
Adam as the baseline algorithm and include more recent state-of-the-art adaptive learning rate meth-
ods Quasi-Hyperbolic Adam (QHAdam) [23] and AMSGrad [29] in our comparison. See Appendix
B.2.1 for details. We tune all learning rates in roughly multiples of 3 and try to keep all other
parameters close to those recommended in the original literature. For DEMON Adam, we leave
Binit = 0.9, B2 = 0.999 and decay from Sy to 0 in all experiments.

We report results in tabulated form in Tables 1, 2 and Figure 1, with images produced by gen-
erative networks in the Appendix B.3. DEMON Adam appears to continue to learn after other
methods have plateaued, leading to significantly better performance. With DEMON Adam applied
to a ResNet18 network on CIFAR10, we achieve the generalization error reported in the literature
[10] for this model, attained using SGDM and a curated learning rate decay schedule. With DEMON
Adam applied to a VGG16 network on CIFAR100, we observe a 1-3% decrease in generalization
error than typically reported results with the same model and task [32], which are attained using
SGDM and a curated learning rate decay schedule.

Training and validation errors Training and validation errors

DEMON Adam (decay starting at epoch 0)
—— DEMON Adam (decay starting at 75% epochs) | 0.4

Training loss (dotted)

) 50 100 150 200 250 300 50 100 150 200 250 300 50 100 150 200 250 300
epochs epochs. epochs.

Figure 1: Two left-most plots: RN18-CIFAR10-DEMONAdam for 300 epochs. Right-most plot:
VGG16-CIFAR100-DEMONAdam for 300 epochs. Dotted and solid lines represent training and gener-
alization metrics respectively. Shaded bands represent one standard deviation.

4.2. Adaptive momentum methods

We apply DEMON SGDM (Algorithm 2) to a variety of models and tasks. Since SGDM with
learning rate decay is most often used to achieve the state-of-the-art results with the architectures
and tasks in question, we include SGDM with learning rate decay as the target to beat. SGDM with
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| ResNet18 LSTM VAE
| 75 epochs 150 epochs 300 epochs | 25 epochs 39 epochs | 50 epochs 100 epochs
Adam 13.63 +£.22 1190+ .06 11.94+ .06 | 11554+ .64 11502+ .52 | 136.28 £ .18 134.64 £+ .14

AMSGrad 1343 +£.14 11.83+£.12 1048+ .12 | 108.07 £.19 107.87 £ .25 | 13789 £ .12  135.69 + .03
QHAdam 1555+.25 1378 £.08 13364 .11 | 112524+ .23 11245+ .39 | 136.69 + .17  134.84 £ .08
DEMON Adam | 9.69 £ .10 8.83 + .08 8.44 £ .05 101.57 .32 101.44 = 47 | 13446 &= .17  134.12 £+ .08

Table 1: ResNet18-CIFAR10-DEMONAdam generalization error, PTB—LSTM-DEMONAdam general-
ization perplexity, VAE-MNIST-DEMONAdam generalization loss. The number of epochs was predefined
before the execution of the algorithms.

‘ VGG-16 Wide Residual 16-8 NCSN

‘ 75 epochs 150 epochs 300 epochs ‘ 50 epochs 100 epochs 200 epochs ‘ 512 epochs

Adam 3798 £ .20 33.624.11 31.094+.09 | 23354+ .20 19.63+ .26 18.65+.07 | 8.15+ .20
AMSGrad 40.67 £ .65 3446+ .21 31.62+.12 | 21.73 £ .25 1935+£.20 18.21 .18 -
QHAdam 36.53 £.20 3296+ .11 3097 4+.10 | 21.25+£.22 1981 +.18 1852+ .25 -

DEMON Adam | 32.40 +£.19 28844 .18 27.114.19 | 19424+ .10 1836+ .11 17.62+.12 | 8.07 £ .08

Table 2: VGG16—-CIFAR100-DEMONAdam generalization error, WideResNet-STL10-DEMONAdam
generalization error, and NCSN-CIFAR1O0-DEMONAdam inception score.

learning rate decay is implemented with a decay on validation error plateau, where we hand-tune the
number of epochs to define plateau. Recent adaptive momentum methods included in this section
are Aggregated Momentum (AggMo) [22], and Quasi-Hyperbolic Momentum (QHM) [23]. We
exclude accelerated SGD [15] due to difficulties in tuning. See Appendix B.2.2 for details. Similar
to the last section, we tune all learning rates in roughly multiples of 3 and try to keep all other
parameters close to those recommended in the original literature. For DEMON SGDM, we leave
Binit = 0.9 for most experiments and generally decay from i to 0.

| ResNet18 LSTM VAE

| 75 epochs 300 epochs | 25 epochs 39 epochs | 50 epochs 100 epochs

SGDM learning rate decay | 9.05 £ .07 797 £+ .14 89.59 £.07 87.57+ .11 | 140.51 .73  139.54 £ .34

AggMo 13.024+ .23 1094+ .12 | 89.09+.16 89.07 £ .15 | 139.69 & .17  139.07 &+ .26
QHM 1266 £.19 1042+ .05 | 9447+ .19 9444 £ .13 | 14584+ .39 14092+ .19
DEMON SGDM 8.97 £ .16 7.58+£.04 | 88.33£.16 8832+ .12 | 139.32 £ .23 137.51 £.29

Table 3: ResNet18-CIFAR10-DEMONSGDM generalization error, PTB—LSTM-DEMONSGDM generaliza-
tion perplexity, VAE-MNIST-DEMONSGDM generalization loss.

| VGG-16 Wide Residual 16-8

\ 75 epochs 150 epochs 300 epochs \ 75 epochs 150 epochs 300 epochs
SGDM learning rate decay | 35.29 .59  30.65 £ .31 29.74+ 43 | 21.054+ .27 17.83£0.39 15.16 .36

AggMo 4285+ .89 3425+ .24 3232+.18 | 22.70 £ .11 20.06 £ .31 17.90 + .13
QHM 42,14+ .79 3387+.26 3245+ .13 | 22.86 + .15 19.40 + .23 17.79 £+ .08
DEMON SGDM 3435+ .44 3059+ .26 28994 .16 | 19.45 £ .20 15.98 £ .40 13.67 + .13

Table 4: VGG16-CIFAR100-DEMONSGDM, WideResNet—-STL10-DEMONSGDM generalization error.
We report results in tabulated form in Tables 3 and 4. With DEMON SGDM, we often achieve
better generalization error than SGDM with learning rate decay, a surprising finding given the fre-
quency with which SGDM with learning rate decay achieves state-of-the-art results. Similarly to
DEMON Adam, DEMON SGDM often continues to learn after other methods have plateaued.
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Appendix A. Proof of convergence

We analyze the global convergence of DEMON CM in the convex setting, following [7]. For an
objective function f which is convex, continuously differentiable, its gradient V f(-) is Lipschitz
continuous with constant L, our goal is to show that f(f7) converges to the optimum f* with
decreasing momentum, where 7 is the average of 6, fort = 1, ..., T. Our following theorem holds
for a constant learning rate and 5; decaying with ¢.

Theorem 1 Assume that f is convex, continuously differentiable, its gradient V f(-) is Lipschitz
continuous with constant L, with a decreasing momentum, but constant step size, as in:

1 t+1 2
B = T2 (07 3L)
We consider the CM iteration in non-stochastic settings, where:
9t+1 = Qt — an(Gt) + ﬁt (975 — 9,5_1) .

Then, the sequence {Qt}tT:1 generated by the CM iteration, with decreasing momentum, satisfies:
) x o 101-0*1% (3 1
FOr) = f < B (1L + 55)
where O is the Cesaro average of the iterates: Op = % Zthl 0,

Proof. Let 5, = % ii; and

= %(Qt 915_1).

We consider the CM iteration in non-stochastic settings, where:

Or1 = 0r — aV f(0r) + B (6 — Or—1) .

Using the definition of p; above, one can easily prove that:

1 1 a(t+2
Oi41 + pry1 = (1 + m)et—f—l - m@: =0 +pt — i+1 )Vf(et)-

Using this expression, we will analyze the term ||0;41 + pir1 — 0%|2:

2
18041+ pra = 612 = 1160 + po — 0712 = 2552 0, + p — 6%,V £(0)) + (SH2) - IV £0)IP

= 161+ pr — 0| — 25 (0 — 61, V F(62))

202 (g, — 0%, 9 7(00) + (D) V50|

Since f is convex, continuously differentiable, its gradient is Lipschitz continuous with constant L,
then

HIV O < (0, — 0%,V £(64)), )
F0) = F*+ SLIVF(0)17 < (6 — 6°, V£ (6r)), 3)
J(0r) — f(0i-1) < (0 — 01,V f(0r)). @)

10
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Substituting the above inequalities leads to
16041 + pess — 01 < (10 + pr — 0% = ZHEE(F(60) — £(6:1))

— 200D 17 £(6,)]% — 20M2(£(01) — f*)

2
— (0242 v @) + (ﬁfﬁ) V()2

where A € (0, 1] is a parameter weighting (2) and (3). Grouping together terms yields
(B 252 (£(0) = 1) + [0rra + pria = 0°|
< 2D (F(Oa) = 1)+ 00+ p - 077
A (R - 2 ) ()]

The last term is non-positive when o € [0, ﬂ(%)] so it can be dropped. Summing over ¢t =

t+2
1,...,T yields

T
aXy EE(f(0,) - f*) +
t=1

+

[M]=

(2?(75?1? (f(0) = 1) + 11041 + Pri1 — 9*”2)

-
I

1

(2852 (£(01) = /%) + 1600+~ 0°))

M=

t

1

implying that:
MZ H2(£(0) — f*) < 3a(f(01) — F*) + (161 — 67]%
Since:
T T
20\ Z ) < 20X EER(f(0,) — f*) < 3aX> (f(6:) — f7),
t=1 t=1

we further have:
T
300 Y (F(6) — 1) < 3(3a<f<91> Y16 - G*HZ).
t=1

Due to the convexity of f,

observe that

FOr) = f < 2> (F(0) = £7) < 557 ol f(01) — £5) + 31101 — 0%]) .

Since f(61) — f* < L||6; — 6*||? by Lipschitz continuous gradients, setting A = 1 and observing
(t+1)/(t+2) > 2/3 gives the result.
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Experiment short name Model Dataset Optimizer
RN18-CIFAR10-DEMONSGDM ResNet18 CIFAR10 DEMON SGDM
RN18-CIFAR10-DEMONAdam ResNet18 CIFAR10 DEMON Adam
VGG16-CIFAR100-DEMONSGDM | VGG-16 CIFAR100 DEMON SGDM
VGG16-CIFAR100-DEMONAdam | VGG-16 CIFAR100 DEMON Adam
WRN-STL10-DEMONSGDM Wide ResNet 16-8 | STL10 DEMON SGDM
WRN-STL10-DEMONAdam Wide ResNet 16-8 | STL10 DEMON Adam
LSTM—-PTB-DEMONSGDM LSTM RNN Penn TreeBank | DEMON SGDM
LSTM-PTB-DEMONAdam LSTM RNN Penn TreeBank | DEMON Adam
VAE-MNIST-DEMONSGDM VAE MNIST DEMON SGDM
VAE-MNIST-DEMONAdam VAE MNIST DEMON Adam
NCSN-CIFAR10-DEMONAdam NCSN CIFARI10 DEMON Adam

Table 5: Summary of experimental settings.

Appendix B. Experiments

We evaluated the momentum decay rule with Adam and SGDM on Residual CNNs, Non Residual
CNNS, RNNs and generative models. For CNNs, we used the image classification datasets CI-
FAR10, CIFAR100 and STL10 datasets. For RNNs, we used the language modeling dataset PTB.
For generative modeling, we used the MNIST and CIFAR10 datasets. For each network dataset pair
other than NSCN, we evaluated Adam, QHAdam, AMSGrad, DEMON Adam, AggMo, QHM, DE-
MON SGDM, and SGDM with learning rate decay. For adaptive learning rate methods and adaptive
momentum methods, we generally perform a grid search over the learning rate. For SGDM, we
generally perform a grid search over learning rate and initial momentum. For SGDM learning rate
decay, the learning rate is decayed by a factor of 0.1 after there is no improvement in validation loss
for the best of {1, 2, 3,5, 10, 20, 30,40} epochs.

B.1. Setup

We describe the six test problems in this paper.

o CIFARI10 - ResNet18 CIFAR10 contains 60,000 32x32x3 images with a 50,000 training set,
10,000 test set split. There are 10 classes. ResNet18 [10] is an 18 layers deep CNN with skip
connections for image classification. Trained with a batch size of 128.

e CIFAR100 - VGG16 CIFAR100 is a fine-grained version of CIFAR-10 and contains 60,000
32x32x3 images with a 50,000 training set, 10,000 test set split. There are 100 classes. VGG16
[35]is a 16 layers deep CNN with extensive use of 3x3 convolutional filters. Trained with a batch
size of 128

o STL10 - Wide ResNet 16-8 STL10 contains 1300 96x96x3 images with a 500 training set, 800
test set split. There are 10 classes. Wide ResNet 16-8 [45] is a 16 layers deep ResNet which is 8
times wider. Trained with a batch size of 64.

e PTB - LSTM PTB is an English text corpus containing 929,000 training words, 73,000 validation
words, and 82,000 test words. There are 10,000 words in the vocabulary. The model is stacked

12
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LSTMs [12] with 2 layers, 650 units per layer, and dropout of 0.5. Trained with a batch size of
20.

e MNIST - VAE MNIST contains 60,000 32x32x1 grayscale images with a 50,000 training set,
10,000 test set split. There are 10 classes of 10 digits. VAE [18] with three dense encoding layers
and three dense decoding layers with a latent space of size 2. Trained with a batch size of 100.

o CIFAR10 - NCSN CIFARI10 contains 60,000 32x32x3 images with a 50,000 training set, 10,000
test set split. There are 10 classes. NCSN [36] is a recent state-of-the-art generative model which
achieves the best reported inception score. We compute inception scores based on a total of 50000
samples. We follow the exact implementation in and defer details to the original paper.

B.2. Methods
B.2.1. ADAPTIVE LEARNING RATE

Adam [17], as previously introduced in section ??, keeps an exponentially decaying average of
squares of past gradients to adapt the learning rate. It also introduces an exponentially decaying
average of gradients.

The Adam algorithm is parameterized by learning rate n > 0, discount factors 81 < 1 and
B2 < 1, a small constant ¢, and uses the update rule:

Ely=bB1-& + (1= p1) g
ENY = B2 & + (1= B2) - (90 9r),

6t+1i 6t’i -& : Vi
’ ) o t+1,4° :
VELLite ’

AMSGrad [29] resolves an issue in the proof of Adam related to the exponential moving aver-
age £/°9, where Adam does not converge for a simple optimization problem. Instead of an expo-
nential moving average, AMSGrad keeps a running maximum of £9°9.

The AMSGrad algorithm is parameterized by learning rate n > 0, discount factors 5; < 1 and
B2 < 1, a small constant €, and uses the update rule:

Ely=P1-E +(1—=51) g,
& = P2 E + (1= B2) - (910 ),
&N = max(E777,E079),

Ori1,i = Ori — ——— - &L\
’ tE e MY
g°9

where &/ +1 and &7 are defined identically to Adam.

QHAdam (Quasi-Hyperbolic Adam) [23] extends QHM (Quasi-Hyperbolic Momentum), intro-
duced further below, to replace both momentum estimators in Adam with quasi-hyperbolic terms.
This quasi-hyperbolic formulation is capable of recovering Adam and NAdam [4], amongst others.

The QHAdam algorithm is parameterized by learning rate > 0, discount factors 51 < 1 and
B2 < 1, v1,v9 € R, asmall constant ¢, and uses the update rule:

Vi,

13
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i =01-& + 1 —=B) - ar,
EL = Ba- &Y + (1= B2) - (g0 gr),
ngrl =1+ 55“)4 'gtg+1a
T = (L8t -8,
Ory1 =015 — 77[ A=) getn .éiqﬂ , Vt,
\/(1 —19)g? + vy - c‘ftgﬁ +€

where £/, | and /7] are defined identically to Adam.

B.2.2. ADAPTIVE MOMENTUM

AggMo (Aggregated Momentum) [22] takes a linear combination of multiple momentum buffers.
It maintains K momentum buffers, each with a different discount factor, and averages them for the
update.

The AggMo algorithm is parameterized by learning rate 7 > 0, discount factors 5 € RX, and
uses the update rule:

(€)W =D (gD + g, Vi€ L K]
K

1 i
Or1i =0ri—n [K > (&) )] , VL

=1

QHM (Quasi-Hyperbolic Momentum) [23] is a weighted average of the momentum and plain
SGD. QHM is capable of recovering Nesterov Momentum [26], Synthesized Nesterov Variants [20],
accSGD [15] and others.

The QHM algorithm is parameterized by learning rate n > 0, discount factor 5 < 1, immediate
discount factor v € R, and uses the update rule:

5f+1zﬁgig+(1_ﬁ)gta
Orr15 =01 — (1 —v) 'gt+V'5tg+1}= vt.

B.3. Additional results for adaptive learning rate methods

In Figure 2, we display randomly selected images from the CIFAR10 dataset, either real, gener-
ated by NCSN trained with Adam, and generated by NCSN trained with DEMON Adam. Images
produced by NCSN trained with Adam appear noticeably bright green.

B.4. Additional results for adaptive momentum methods

Learning curves for various datasets are given in Figure 3

14
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Figure 2: Randomly selected CIFAR10 images generated with NCSN. Left: Real CIFAR10 images. Middle:
Adam. Right: DEMON Adam.
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Figure 3: Top row, two left-most plot: RN18-CIFAR10-DEMONSGDM for 300 epochs. Top row,
right-most plot: VGG16-CIFAR100-DEMONSGDM for 300 epochs. Bottom row, left-most plots:
WRN-STL10-DEMONSGDM for 200 epochs. Bottom row, middle plot: PTB-LSTM-DEMONSGDM for 25
epochs. Bottom row, right-most plot: VAE-MNIST-DEMONSGDM for 200 epochs. Dotted and solid lines
represent training and generalization metrics respectively. Shaded bands represent 1 standard deviation.
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