
Streaming Robust PCA

Yang Shi shiy4@uci.edu
University of California, Irvine
U.N. Niranjan Niranjan.Uma@microsoft.com
Microsoft Corporation Abstract

In this paper, we consider the problem of robust PCA in the streaming setting with space
constraints. The problem can be stated as follows: at time t, we are given a n-dimensional
data vector xt = uzt + st where u is a fixed vector, zt is a Gaussian random variable
and st is an arbitrary sparse perturbation. Without storing samples, we wish to recover u
and subsequently also separate the sparse perturbation st from each sample. Essentially,
our algorithm performs simple iterative hard-thresholding followed by stochastic block
power method. Our algorithm also has the optimal space complexity of O(n) and a sample
complexity of O(n log n).

1 Introduction

The robust PCA problem addresses the following question: suppose we are given a data matrix which is the
sum of an unknown low-rank matrix and an unknown sparse matrix, can we recover each of the component
matrices? Despite the inherent non-convexity of the problem, recent advances have provided algorithms with
near-optimal convergence guarantees. However, these bounds hold only in the batch setting, ie, when the entire
data matrix is known. In the present work, we analyze robust PCA in the streaming setting, focusing on the
rank-1 case where we would like to recover the top eigenvector of the true covariance without the perturbation
effect due to sparse corruptions.

1.1 Our Contribution

To the best of our knowledge, we obtain the first-known convergence guarantees from streaming robust PCA
while having finite sample complexity of O(n log n) and also having optimal space complexity of O(n) where
n is the dimension; the precise result is stated in Theorem 3.1. The assumptions that we use are natural
identifiability assumptions used in the batch case as well, the details of which are presented in Section 3. At a
high level, our algorithm performs alternating hard-thresholding followed by stochastic block power method.
Two specific improvements from earlier works are: (1) we have the weaker deterministic assumption for the
sparse perturbation (2) We do not need incoherence of the intermediate updates in our analysis.

1.2 Related work

PCA: Principal Component Analysis (PCA) is an ubiquitous unsupervised learning algorithm and has a
rich history. Oja’s algorithm is a classical method for streaming PCA Oja and Karhunen [1985]. Though
the convergence and empirical performance were known, the asymptotic convergence rate was first provided
in Balsubramani et al. [2013]. Improving on the analysis of Balsubramani et al. [2013], linear convergence
is presented in Shamir [2015] but with the requirement that the initialization vector must have a constant
correlation with the true eigenvector. The convergence of block stochastic power method is considered in
Mitliagkas et al. [2013] for PCA in the streaming setting. Recently, a tighter analysis for Oja’s algorithm is
provided in Jain et al. [2016]. Also, Alecton is a SGD algorithm for low-rank matrix problems presented in
De Sa et al. [2014]. Their analysis is based on control of martingales to achieve O

(
1
ε

)
convergence rate where

ε is the desired numerical error.
Robust PCA: The convergence of the non-convex alternating projections based method was analyzed in
Netrapalli et al. [2014] in the batch setting. Recently, a projected gradient method on factorized matrices
was presented in Yi et al. [2016]. They also match the time complexity lower bound of Õ(rn2) in the fully
observed setting and also provide guarantees under the partially observed setting, however, only in the batch
setting. For the online setting, the work by He et al He et al. [2011] presented an algorithm based on online
`1-minimization which also had good empirical performance.

OPTML 2017: 10th NIPS Workshop on Optimization for Machine Learning (NIPS 2017).

2 Problem Setup

2.1 Model
We consider the popular spiked-covariance model with sparse perturbations in n-dimensions, ie, xt = Azt+st
where A is an unknown n × r matrix of rank-r and st is deterministic sparse perturbation with unknown
support and magnitude. Given a sample xt at time t, we wish to recover st and with finite such samples, we
wish to find the space spanned by the columns of A upto a fixed numerical accuracy ε. In other words, if
A = UΣV > is the SVD, we wish to find the eigenvectors U . In this paper, we will focus only on the rank-1
case, ie, at time instance t, the data vector is given by xt = uzt + st where ‖u‖2 = 1.

2.2 Notations and Assumptions
We introduce natural (standard) conditions, similar to Netrapalli et al. [2014] under which the problem is
identifiable:

1. Low-rank part: For simplicity we have assumed that the eigenvalue corresponding to the top eigen-
vector is 1. u is µ-incoherent, ie, ‖u‖∞ ≤

µ√
n

and zt
iid∼ N (0, 1). We note that we may relax this

generative assumption on zt to a random variable such that E[zt] = 0, E[z2t] = 1, |zt| ≤ Zmax almost
surely with a little care.

2. Sparse part: we have a deterministic sparsity condition, ie, ‖st‖0 ≤ dh and also without loss of
generality, we assume ‖st‖∞ ≤

smax√
n

.

Let bi denote the ith basis vector in n dimensions. Define the entry-wise hard-thresholding operation of a
vector v, denoted as Thresha(v) as follows: for every i,

Thresha(b>i v) =

{
b>i v, if

∣∣b>i v∣∣ > a

0, else

We use h, t, andτ to denote outermost,middle, and innermost loop indices in Algorithm 1. For all τ , eτt = st−
ŝτt where ŝτt is our estimate of st resulting from the τ -th thresholding step. Let ŝt = ŝTt , et = eTt for every t. uh
is the estimated u after h outermost loops. Note that we can decompose uh as uh = ±

(√
1− αhu+

√
αhvh

)
,

where u ⊥ vh and αh ∈ (0, 1), for every h ≥ 1. Let Σh =
∑Bh
t=B(h−1)+1

1
B (xt − ŝt)(xt − ŝt)> denote

our estimate of the true covariance at epoch h, Σ = uuT , and define ∆h = Σ − Σh. We define quantities
Zh−1 = Zmax

(
αh−1

µ√
n

+
√
αh−1 (1− αh−1)

)
. We assume dh < min

(
1

100
n

µ2+3µnαh−1
, 1
250Z2

max
√
αh−1

)
where dh is the number of non-zeros in st that appears at epoch h.

‖.‖2 denotes the two-norm of a vector or the spectral norm of a matrix, ‖.‖∞ denotes the maximum of the
absolute values of the entries of a vector or a matrix, ‖.‖1 is the sum of absolute values of entries of a vector,
‖.‖0 is the number of non-zeros in a vector.

2.3 Algorithm
We present our algorithm for the rank-1 case in Algorithm 1. There are three key loops in Algorithm 1
namely, (1) (innermost) τ -loop which we call alternations, (2) (middle) t-loop which we call iterations, and (3)
the (outermost) h-loop which we call epochs. Our algorithm uses random initialization for our eigenvector
estimate, which is also very easy in practice. Intuitively, the τ -loop is performs denoising via iterative
hard-thresholding, ie, it solves the optimization problem:

{ẑt, ŝt} = arg min
a∈R,b∈Rn

‖xt − (ua+ b)‖2 s.t. ‖b‖0 ≤ dh

From this, we obtain an estimate of the sparse perturbation vector and consequently, the scaling factor
associated with u. By subtracting this out, we obtain vector which is close to our desired subspace. Using a
block of B such vectors, the t-loop accumulates the sample covariance matrix. Finally, the h-loop performs
a noisy power method update on the accumulated covariance matrix until our estimate reach the desired
numerical accuracy ε with respect to the true eigenvector. Note that this is effectively a block version of the
usual power method but the key challenge is to control the perturbation in the sample covariance estimate due
to (1) the error induced by thresholding (ie, running only a finite number of alternations), and (2) the error in
our estimate of the top eigenvector in the current epoch. Additionally, we note that samples are never revisited
and hence this is a one-pass algorithm. As described in Section 3, note that smax is a constant which may be
assumed to be known, without loss of generality.

2

Remark 2.1. Note that we don’t know αh−1 in practice and hence don’t know the exact bound on Zh−1 but
we will see that from Theorem 3.4 that a simple rule is to set Zh−1 = C1

√
nC
−(h−1)/2
2 where C1, C2 > 0 are

constants.

Algorithm 1 Block Stochastic Power Method with Hard Thresholding

1: Input: Samples {x1, . . . , xT } ∈ Rn such that xt = uzt + st
2: Output: Leading eigenvector of the denoised samples uH
3: u′0 ∼ N (0, In×n)

4: u0 ← u′0
‖u′0‖2

5: for h = 1, . . . ,H = T
B do

6: u′h ← 0
7: for t = B(h− 1) + 1, . . . , Bh do
8: ŝ0t ← 0
9: for τ = 1, . . . , T do

10: ζτt ← 2Zh−1 + 1
5

(
1
10

)τ smax√
n

11: ẑτt ← u>h−1(xt − ŝτ−1t)
12: ŝτt ← Threshζτt (xt − uh−1ẑτt)
13: end for
14: ŝt ← ŝTt
15: u′h ← u′h + 1

B (xt − ŝt)(xt − ŝt)>uh−1
16: end for
17: uh ← u′h

‖u′h‖2
18: end for
19: return ẑ1, . . . , ẑT , ŝ1, . . . , ŝT , uT/B

3 Analysis
For simplicity and concreteness, we now present the main result for the rank-1 case and present the proof
details in appendix.

Theorem 3.1. Under the assumptions in Section 2.2, if B ≥ 32Cn(logH)2

ε2 , H ≥ C5 log
(
n
ε

)
, T >

log10

(
C1
√
n log(H)smax

ε
√
B

)
, with probability at least 1 − 6C, Algorithm 1 yields an ε-close solution in the

sense that αH ≤ ε.

Proof outline: At a high level, the proof of convergence involves analyzing the three loops in Algorithm 1,
namely: (1) convergence of (innermost) τ -loop (alternations), (2) concentration properties in (middle) t-loop
(iterations), and (3) convergence of (outermost) h-loop (epochs). We wish re-emphasize that the concentration
arguments are different from Mitliagkas et al. [2013, 2014] since we do not have any randomness assumptions
on the support of the sparse perturbation. Lemma 3.1 quantifies the property of our initialization that is proved
in Lemma 6 of Mitliagkas et al. [2013] but we provide it here for completeness.
Lemma 3.1. The initialization given by Steps 3 and 4 of Algorithm 1 yields a vector u0 such that

√
1− α0 =

O(1/
√
n) with probability 1− o(1).

3.1 Convergence of the Innermost Loop
The main result of this section is the validity of the hard-thresholding operation, stated as:

Theorem 3.2. For every t, after T > log10

(
smax

ε
√
n

)
alternations we have ‖et‖∞ ≤ 4Zh−1 + ε.

3.2 Concentration Properties in the Middle Loop
We analyze the concentration properties of many iterations within a single epoch, ie, with enough number of
samples, the covariance within a block concentrates. In this step, it is essential to show that the covariance in a
single epoch converges to the true covariance plus a perturbation that depends on the sparse perturbation and
is decaying as epochs proceed, so that this estimate may then be used for block power method updates. We
note that the index t in this section runs from B(h− 1) + 1 to Bh and to simplify notation, we will omit this
range in the summations. Thus, the main result of this section is:

3

Outermost epochs h
1 2 3 4 5 6 7 8 9 10

lo
g
(
α

h
)

-40

-30

-20

-10

0

µ = 1

µ = 2
µ = 4

µ = 5

Outermost epochs h
1 2 3 4 5 6 7 8 9 10

lo
g
(
α

h
)

-20

-15

-10

-5

0

n = 1000

n = 1500

n = 2000

Figure 1: Log of αh with T = 1000, B = 100. (Left) n = 1000, varying µ.
(Right) µ = 2, varying n.

Outermost epochs h
1 2 3 4 5 6 7 8 9 10

lo
g
(
α

h
)

-25

-20

-15

-10

-5

0

n = 500, orpca

n = 500, oja's

n = 1000, orpca

n = 1000, oja's

Figure 2: Log of αh with T = 1000,
B = 100, µ = 2 using Algorithm 1
and Oja’s algorithm.

Theorem 3.3. Setting T > log10

(
C1
√
n log(H)smax

ε
√
B

)
for every t, letting B ≥ 32Cn(logH)2

ε2 , with probability

1− 6C
H , we have ‖∆h‖2 ≤ ε+ 100dhZ

2
maxαh−1.

3.3 Convergence of the Outermost Loop
The goal here is to show that αh → 0 by quantifying the improvement (decrease) of αh over αh−1. The main
result for this section is:
Theorem 3.4. If H ≥ C5 log

(
n
ε

)
with probability at least 1− 6C, we obtain αH ≤ ε where C5 and C are

constants.

4 Experiment
In this section, we show some synthetic results using Algorithm 1. We generate the samples in a batch, but
only feed them in the algorithm one by one. xt = uzt + st. Entities in u ∈ Rn are i.i.d. samples generated
from N (0, 1). zt is also generated from N (0, 1). st is generated at the beginning of each outermost loop and
then added to the low rank part before we use the noisy sample in middle and inner loops.

In Figure 1, we show the convergence of αh varying incoherence parameter µ and sample dimension n. We
also compare our algorithm with Oja’s algorithm Oja and Karhunen [1985]. Since Oja’s algorithm considered
pure online PCA problem, we expect it to fail in our task. From Figure 2, we can see that the log distance
using Oja’s algorithm is close to 0, which means αh is close to 1. In other word, the estimated uh is far away
from u.

5 Conclusion and Future Work
In this paper, we have presented the first convergence result for the robust PCA problem in the streaming
setting under the most general assumptions compared to previous works mentioned in Section 1.2. Extending
the results in this paper to the rank-r case should be possible along similar lines but we note two points: (1) a
naïve analysis would lead to loose bounds and hence care must be taken in accounting for the r-eigenvectors
while using the distance between subspaces to track the progress of the algorithm, and (2) we suspect that the
convergence guarantee for the rank-r analogue of Algorithm 1 (ie, via block stochastic orthogonal iteration
with hard thresholding) will have a sub-optimal dependence on the condition number and hence one plausible
fix would be consider the streaming version of the stage-wise algorithm in Netrapalli et al. [2014]. We
defer these analyses of the rank-r case to future work. Though the main focus of this paper was to obtain
convergence guarantees, we wish to note that potential applications include real-time background-foreground
separation in videos and real-time subspace tracking similar to He et al. [2011].

4

References
A. Balsubramani, S. Dasgupta, and Y. Freund. The fast convergence of incremental pca. In Advances in

Neural Information Processing Systems, pages 3174–3182, 2013.

C. De Sa, K. Olukotun, and C. Ré. Global convergence of stochastic gradient descent for some non-convex
matrix problems. arXiv preprint arXiv:1411.1134, 2014.

J. He, L. Balzano, and J. Lui. Online robust subspace tracking from partial information. arXiv preprint
arXiv:1109.3827, 2011.

P. Jain, C. Jin, S. M. Kakade, P. Netrapalli, and A. Sidford. Streaming pca: Matching matrix bernstein and
near-optimal finite sample guarantees for oja’s algorithm. In 29th Annual Conference on Learning Theory,
pages 1147–1164, 2016.

I. Mitliagkas, C. Caramanis, and P. Jain. Memory limited, streaming pca. In Advances in Neural Information
Processing Systems, pages 2886–2894, 2013.

I. Mitliagkas, C. Caramanis, and P. Jain. Streaming pca with many missing entries. Preprint, 2014.

P. Netrapalli, U. Niranjan, S. Sanghavi, A. Anandkumar, and P. Jain. Non-convex robust pca. In Advances in
Neural Information Processing Systems, pages 1107–1115, 2014.

E. Oja and J. Karhunen. On stochastic approximation of the eigenvectors and eigenvalues of the expectation of
a random matrix. Journal of mathematical analysis and applications, 106(1):69–84, 1985.

O. Shamir. A stochastic pca and svd algorithm with an exponential convergence rate. In Proc. of the 32st Int.
Conf. Machine Learning (ICML 2015), pages 144–152, 2015.

R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv preprint arXiv:1011.3027,
2010.

X. Yi, D. Park, Y. Chen, and C. Caramanis. Fast algorithms for robust pca via gradient descent. arXiv preprint
arXiv:1605.07784, 2016.

5

6 Appendix

6.1 Proof of Theorem 3.2

Proof. This follows from Lemmas 6.1 and 6.2.

Lemma 6.1. We have the following useful short results.

1.
∥∥(I − uh−1u>h−1)u∥∥∞ ≤ αh−1 µ√

n
+
√
αh−1 (1− αh−1).

2. Zh−1 ≤ 2Zmax
√
αh−1.

3. When αh−1 > 1
n , ‖uh−1‖2∞ ≤

µ2+3µnαh−1

n . Else, ‖uh−1‖2∞ ≤
4µ2

n .

Proof. 1.
∣∣u>uh−1∣∣ =

√
1− αh−1 and sign(u>uh−1). sign(b>i uh−1) = sign(b>i u).

Thus, ∥∥u− (u>h−1u)uh−1
∥∥
∞ =

∥∥∥u−√1− αh−1
(√

1− αh−1u+
√
αh−1vh−1

)∥∥∥
∞

≤ αh−1 ‖u‖∞ +
√
αh−1 (1− αh−1) ‖vh−1‖∞

≤ αh−1
µ√
n

+
√
αh−1 (1− αh−1)

2. We can obtain an upper bound on Zh−1 as follows:

Zh−1 = Zmax

(
αh−1

µ√
n

+
√
αh−1 (1− αh−1)

)
≤ Zmax

√
αh−1

(
√
αh−1

µ√
n

+
√

1− αh−1
)

By noting that αh−1 ∈ (0, 1) and µ ≤
√
n, we obtain Zh−1 ≤ 2Zmax

√
αh−1.

3. Since αh−1 ∈ (0, 1), we have 1− αh−1 < 1. Using this in ξ1,

‖uh−1‖2∞ =
∥∥∥(√1− αh−1u+

√
αh−1vh−1

)∥∥∥2
∞

≤ (1− αh−1) ‖u‖2∞ + αh−1 ‖vh−1‖2∞
+ 2
√
αh−1 (1− αh−1) ‖u‖∞ ‖vh−1‖∞

≤ (1− αh−1)
µ2

n
+ αh−1 + 2

√
αh−1 (1− αh−1)

µ√
n

ξ1
≤ µ2

n
+ αh−1 + 2

√
αh−1

µ√
n

=
µ2 + nαh−1 + 2µ

√
nαh−1

n

When αh−1 > 1
n , we have nαh−1 >

√
nαh−1. So, ‖uh−1‖2∞ ≤

µ2+3µnαh−1

n by noting µ ≥ 1.

Lemma 6.2. If
∥∥eτ−1t

∥∥
∞ ≤ 4Zh−1 +

(
1
10

)τ−1 smax√
n

, then we have:

1.
∣∣b>i (uzt − uh−1ẑτt)

∣∣ ≤ 26
25Zh−1 +

(
1
10

)τ+1 smax√
n

2. ‖eτt ‖∞ ≤ 4Zh−1 +
(

1
10

)τ smax√
n

.

3. Moreover, Supp (eτt) ⊆ Supp
(
eτ−1t

)
⊆ Supp (st).

6

Proof. 1. xt − uh−1ẑτt = (uzt + st)− uh−1ẑτt
=⇒

∣∣b>i (xt − uh−1ẑτt − st)
∣∣ =

∣∣b>i (uzt − uh−1ẑτt)
∣∣.∣∣b>i (uzt − uh−1ẑτt)

∣∣ ξ1= ∣∣b>i (uzt − uh−1u>h−1(xt − ŝτ−1t))
∣∣

ξ2
=
∣∣b>i (uzt − uh−1u>h−1(uzt + eτ−1t))

∣∣
ξ3
≤
∣∣b>i (uzt − uh−1u>h−1uzt)

∣∣+
∣∣b>i uh−1u>h−1eτ−1t

∣∣
≤ Zmax max

i

∣∣b>i (u− (u>h−1u)uh−1)
∣∣+ max

i

∣∣b>i uh−1u>h−1eτ−1t

∣∣
ξ4
≤ Zmax

∥∥u− (u>h−1u)uh−1
∥∥
∞ + ‖uh−1‖2∞

∥∥eτ−1t

∥∥
1

ξ5
≤ Zmax

(
αh−1

µ√
n

+
√
αh−1 (1− αh−1)

)
+ dh ‖uh−1‖2∞

∥∥eτ−1t

∥∥
∞

ξ6
≤ Zh−1 +

1

100

∥∥eτ−1t

∥∥
∞

ξ7
≤ Zh−1 +

1

100

(
4Zh−1 +

(
1

10

)τ−1
smax√
n

)

≤ 26

25
Zh−1 +

(
1

10

)τ+1
smax√
n

where ξ1 is by substituting ẑτt = u>h−1(xt−ŝτ−1t), ξ2 by recalling the definition that eτ−1t = st−ŝτ−1t ,
ξ3 by triangle inequality, ξ4 by using |〈a, b〉| ≤ ‖a‖∞ ‖b‖1, ξ5 by Lemma 6.1-(1) and noting that∥∥eτ−1t

∥∥
1
≤ dh

∥∥eτ−1t

∥∥
∞, ξ6 by using the definition of Zh−1 and the assumption on dh, ξ7 by

inductive hypothesis that
∥∥eτ−1t

∥∥
∞ ≤ 4Zh−1 +

(
1
10

)τ−1 smax√
n

.
2. Next, to complete the induction over τ , let us calculate ‖eτt ‖∞. We have two cases

(a) Case 1
(∣∣b>i (xt − uh−1ẑτt)

∣∣ > ζτt
)
:
∣∣b>i eτt ∣∣ =

∣∣b>i (st − ŝτt)
∣∣ =

∣∣b>i (st − (xt − uh−1ẑτt))
∣∣ =∣∣b>i (uzt − uh−1ẑτt)

∣∣ ≤ 26
25Zh−1 +

(
1
10

)τ+1 smax√
n

.

(b) Case 2
(∣∣b>i (xt − uh−1ẑτt)

∣∣ ≤ ζτt): b>i ŝτt = 0 =⇒ b>i e
τ
t = b>i st and

∣∣b>i (xt − uh−1ẑτt)
∣∣ =∣∣b>i (uzt + st − uh−1ẑτt)

∣∣ ≤ ζτt . So, we have∣∣b>i eτt ∣∣ =
∣∣b>i st∣∣ ≤ ζτt +

∣∣b>i (uzt − uh−1ẑτt)
∣∣

≤
(

2Zh−1 +
1

5

(
1

10

)τ
smax√
n

)
+

(
26

25
Zh−1 +

(
1

10

)τ+1
smax√
n

)

=
76

25
Zh−1 +

(
1

5
+

1

10

)(
1

10

)τ
smax√
n
≤ 4Zh−1 +

(
1

10

)τ
smax√
n

3. If b>i st = 0, then we have b>i e
τ
t = I{|b>i (uzt−uh−1ẑτt)|}>ζτt

(
b>i (uzt − uh−1ẑτt)

)
but note that

∣∣b>i (uzt − uh−1ẑτt)
∣∣ ≤ 26

25
Zh−1 +

(
1

10

)τ+1
smax√
n
< 2Zh−1 +

1

5

(
1

10

)τ
smax√
n

= ζτt

This is a contradiction since the indicator is inactive at location i, so b>i e
τ
t = 0.

6.2 Proof of Theorem 3.3

Proof. We have ∆h = Σh − Σ.

‖Σh − Σ‖2 =

∥∥∥∥∥
B∑
t=1

1

B
(xt − ŝt)(xt − ŝt)> − uu>

∥∥∥∥∥
2

=

∥∥∥∥∥ 1

B

∑
t

(uzt + et)(uzt + et)
> − uu>

∥∥∥∥∥
2

≤ 1

B

∥∥∥∥∥uu>∑
t

(z2t − 1)

∥∥∥∥∥
2︸ ︷︷ ︸

Term−1

+
1

B

∥∥∥∥∥u∑
t

zte
>
t

∥∥∥∥∥
2︸ ︷︷ ︸

Term−2

+
1

B

∥∥∥∥∥∑
t

ztetu
>

∥∥∥∥∥
2︸ ︷︷ ︸

Term−3

+
1

B

∥∥∥∥∥∑
t

ete
>
t

∥∥∥∥∥
2︸ ︷︷ ︸

Term−4

7

The second step is by triangle inequality on the spectral norm of the perturbed matrix. Now, we bound each of
the terms using similar techniques as Mitliagkas et al. ((2013)).

Term-1: Using tail bounds for sub-Gaussian random variables from Vershynin ((2010)), with probability at
least 1− 2C

H

1

B

∥∥∥∥∥uu>∑
t

(
z2t − 1

)∥∥∥∥∥
2

≤

∣∣∣∣∣ 1

B

∑
t

(
z2t − 1

)∣∣∣∣∣ ∥∥uu>∥∥2 ≤
√
C logH

B

Term-2: As spectral norm is sub-multiplicative,
∥∥∑

t uzte
>
t

∥∥
2

=
∥∥u(Ehz)>

∥∥
2
≤ ‖u‖2 ‖Ehz‖2. Now,

for every i, since zt
iid∼ N (0, 1), we have b>i Ehz ∼ N (0, σ2

e) where σ2
e ≤ B ‖Eh‖2∞; this is because

var
(
b>i Ehz

)
= var

(∑B
j=1 b

>
i Ehbjb

>
j z
)
≤ B ‖Eh‖2∞. Hence, with probability 1− 2C

H

‖Ehz‖2 =

√√√√ n∑
i=1

(
b>i Ehz

)2 ≤√n (b>1 Ehz)2 ≤ √n√2σe log

(
H

C

)
where the last line was obtained by using the Hoeffding bound, ie, tail bound for X ∼ N

(
0, σ2

e

)
is given

by Pr (−t ≤ X ≤ t) ≤ 1 − 2 exp
(
− t2

2σ2

)
and noting that

√
X2 is half-normal distribution satisfying this

bound. Further simplifying by substituting ‖Eh‖∞, using Theorem 3.2 and Lemma 6.1-(2), we get

‖Ehz‖2 ≤
√

2nB ‖Eh‖∞ log

(
H

C

)
≤
√

2nB log

(
H

C

)(
8Zmax

√
αh−1 + ε

)
Dividing both sides by B, we obtain 1

B ‖Ehz‖2 ≤
√

2n
B log

(
H
C

) (
8Zmax

√
αh−1 + ε

)
.

Term-3: Same as Term-2.

Term-4: Let ε ≤ Zh−1 ≤ 2Zmax
√
αh−1. Using triangle inequality, sub-multiplicative property, Theorem 3.2

and Lemma 6.1-(4), we have

1

B

∥∥∥∥∥∑
t

ete
>
t

∥∥∥∥∥
2

≤ 1

B

∑
t

∥∥ete>t ∥∥2 ≤ 1

B

∑
t

‖et‖22 ≤
1

B
.B
(√

dh ‖Eh‖∞
)2
≤ dh ‖Eh‖2∞

≤ dh (4Zh−1 + ε)
2 ≤ dh

(
25Z2

h−1
)
≤ 100dhZ

2
maxαh−1

Note that by setting T > log10

(
C1
√
n log(H)smax

ε
√
B

)
we have ‖et‖∞ ≤ 4Zh−1 + ε

√
B

C1n logH where C1 is a

constant. Using this, combining all the terms, letting B ≥ 32Cn(logH)2

ε2 and assuming αh−1 ≤ 1
256Z2

max
, we

obtain, with probability 1− 6C
H :

‖∆h‖2 = ‖Σh − Σ‖2

≤
√
C logH

B
+ 2

√
2n

B
log

(
H

C

)(
8Zmax

√
αh−1 +

ε
√
B

C1n logH

)
+ 100dhZ

2
maxαh−1

≤ ε+ 100dhZ
2
maxαh−1

6.3 Proof of Theorem 3.4

Proof. Noting uh =
u′h
‖u′h‖2

, decomposing u′h as u′h = 〈u′h, u〉u + 〈u′h, vh〉 vh and similarly for uh, using

Lemma 6.3 and assuming 10ε <
√
αh−1, we have,

αh = 〈uh, vh〉2 =

〈
u′h
‖u′h‖2

, vh

〉2

=
〈u′h, vh〉

2

‖u′h‖
2
2

=
〈u′h, vh〉

2

〈u′h, u〉
2

+ 〈u′h, vh〉
2

≤
(
ε+ 100dhZ

2
maxαh−1

)2(√
1− αh−1

(
1− ε−

√
αh−1

1−αh−1
100dhZ2

maxαh−1

))2
+ (ε+ 100dhZ2

maxαh−1)
2

≤
αh−1

(
0.1 + 100dhZ

2
max
√
αh−1

)2
(1− αh−1)

(
1−

(
0.1 +

√
αh−1

1−αh−1
100dhZ2

max
√
αh−1

))2
+ αh−1

(
0.1 + 100dhZ2

max
√
αh−1

)2
8

The second inequality above is obtained by noting that x
c+x is an increasing function in x for positive

x and c. Let C3 =
((

0.1 + 100dhZ
2
max
√
αh−1

)
/
(

0.9−
√

αh−1

1−αh−1
100dhZ

2
max
√
αh−1

))2
. Note that if

dh < 1/250Z2
max
√
αh−1, we note that the constant C3 < 1. Using this and also applying Lemmas 2, 6 of

Mitliagkas et al. ((2013)), we get αh
ξ1
= C3αh−1

1−αh−1+C3αh−1

ξ2
≤ Ch3 α0

1−(1−Ch3)α0
≤ C4C

h
3 n where ξ1 holds with

probability at least 1 − 6C
H and where ξ2 holds with probability at least 1 − 6hC

H where the factor of h
comes by accounting for the failure of atleast one epoch followed by applying the union bound. Hence, if
H ≥ log1/C3

(
C4n
ε

)
with probability atleast 1− 6C, we obtain αH ≤ ε.

Lemma 6.3. We have the following upper and lower bounds.

1. 〈u′h, vh〉 ≤ ε+ 100dhZ
2
maxαh−1.

2. 〈u′h, u〉 ≥
√

1− αh−1
(

1− ε−
√

αh−1

1−αh−1
100dhZ

2
maxαh−1

)
.

Proof. 1. Recall that 〈u, vh〉 = 0. Now,

〈u′h, vh〉 = v>h Σhuh−1 = v>h (Σ + ∆h)uh−1 = v>h uu
>uh−1 + v>h ∆huh−1

≤ 0 + ‖vh‖2 ‖∆h‖2 ‖uh−1‖2 = ε+ 100dhZ
2
maxαh−1

2. Next, we have lower bound the following term since it would appear in the denominator.

〈u′h, u〉 = u>Σhuh−1 = u>
1

B

∑
t

(xt − ŝt) (xt − ŝt)> uh−1

=
1

B

∑
t

(
u> (uzt + et)

) (
(uzt + et)

>
(√

1− αh−1u+
√
αh−1vh−1

))
=

1

B

∑
t

(
zt + u>et

) (√
1− αh−1zt +

√
1− αh−1e>t u+

√
αh−1e

>
t vh−1

)
=

√
1− αh−1
B

∑
t

(
zt + u>et

)2
︸ ︷︷ ︸

Term−5

+

√
αh−1

B

∑
t

(
zt + u>et

) (
e>t vh−1

)
︸ ︷︷ ︸

Term−6

Term-5: With probability 1 − 2C
H , using the settings for B and T from Section 3.2, and the upper

bound for Term-2 with a negative sign (since this is an absolute value of scalar),

1

B

∑
t

(
zt + u>et

)2
=

1

B

∑
t

z2t +
1

B

∑
t

(
u>et

)2
+

2

B

∑
t

ztu
>et

≥ 1−
√
C logH

B
+ 0 +

2

B
u>Ehz ≥ 1− ε

4
− 2

B
‖u‖2 ‖Ehz‖2 ≥ 1− ε

2

Term-6: This is similar to spectral norm upper bounds in Step-2 but with a negative sign, ie,

1

B

∑
t

(
zt + u>et

) (
e>t vh−1

)
≤ 1

B

∣∣v>h−1Ehz∣∣+
1

B

∣∣u>EhE>h vh−1∣∣ ≤ ε

2
+ 100dhZ

2
maxαh−1

Thus, from Terms-5 and 6, and noting αh−1 ≤ 1
4 , we have,

〈u′h, u〉 ≥
√

1− αh−1
(

1− ε

2

)
−√αh−1

(ε
2

+ 100dhZ
2
maxαh−1

)
=
√

1− αh−1
(

1−
(

1 +

√
αh−1

1− αh−1

)
ε

2
−
√

αh−1
1− αh−1

100dhZ
2
maxαh−1

)
≥
√

1− αh−1
(

1− ε−
√

αh−1
1− αh−1

100dhZ
2
maxαh−1

)

9

	Introduction
	Our Contribution
	Related work

	Problem Setup
	Model
	Notations and Assumptions
	Algorithm

	Analysis
	Convergence of the Innermost Loop
	Concentration Properties in the Middle Loop
	Convergence of the Outermost Loop

	Experiment
	Conclusion and Future Work
	Appendix
	Proof of Theorem 3.2
	Proof of Theorem 3.3
	Proof of Theorem 3.4

