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Abstract

This paper deals with unsupervised clustering with feature selection on public single-cell
RNA-seq datasets. The problem is to estimate both labels Y and a sparse projection matrix
W . To address this combinatorial non-convex problem maintaining a strict control on the
sparsity of W , we follow an alternating minimization of the Frobenius norm criterion. We
provide a new efficient algorithm named K-sparse which alternates a k-means step
and a projection-gradient step. The projection-gradient step is a method of splitting type,
with exact projection on the `1 ball to promote sparsity. The convergence of the gradient-
projection step is addressed,and a preliminary analysis of the alternating minimization is
made. The Frobenius norm criterion converges as the number of iterates in Algorithm
K-sparse goes to infinity. Experiments on scRNA-seq datasets show that our method
outperforms PCA k-means, spectral clustering, SIMLR, and Sparclmethods,
and achieves a selection of genes. Complexity of K-sparse is linear with the number of
samples (cells) so it scales up to large datasets.

1 Introduction

As a relatively new technology elected "method of the year" in 2013 by the Journal Nature Methods, single-cell
RNA-sequencing represents a computational and analytical challenge in terms of machine learning applications
in biology. Single-cell RNA-sequencing (scRNA-seq) measures gene expression at single cell level thus
providing a full characterization of the transcriptional landscape of individual cells. One of the main use
and challenge for scRNA-seq is the characterization of cell types by selecting informative features/genes
from high dimension expression profiles which requires robust and accurate clustering methods. State of the
art in computational biology uses methods such as PCA k-means, kernel based spectral clustering. Some
public datasets are now available with ground truth label annotations to test and improve those methods.
However, clustering in high dimension suffers from the curse of dimensionality: as dimensions increase,
vectors become indiscernible and the predictive power of the aforementioned methods is drastically reduced.
In order to overcome this issue, a popular approach for high-dimensional data is to perform Principal
Component Analysis (PCA) prior to clustering using k-means. This approach is however difficult to justify
in general. An alternative approach proposed in [Ding and Li(2007)] is to combine clustering and dimension
reduction by means of Linear Discriminant Analysis (LDA). The heuristic used in [Ding and Li(2007)] is
based on alternating minimization, which consists in iteratively computing a projection subspace by LDA,
using the labels at the current iteration and then running k-means on the projection of the data onto the
subspace. Another efficient approach is the spectral clustering where main tools are graph Laplacian matrices
[Von Luxburg(2007)]. However PCA, LDA and Spectral do not provide sparsity. A popular approach for
selecting sparse features in regression is the Least Absolute Shrinkage and Selection Operator (LASSO)
formulation [Tibshirani(1996)]. The LASSO uses the `1 norm instead of `0 [Candès(2008)], as an added
penalty term (λ being a hyper-parameter tuning sparsity). A main issue is that optimizing the values of the
Lagrangian parameter λ [Witten and Tibshirani(2010)] is computationally expensive [Mairal and Yu(2012)].
Note that all these methods [Ding and Li(2007), Von Luxburg(2007), Witten and Tibshirani(2010)] require
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a k-means heuristic to retrieve the labels. We propose an alternating scheme, K-sparse, combining
k-means clustering, dimension reduction and feature selection using an `1 sparsity inducing constraint.

2 Constrained unsupervised classification

Let X(6= 0) be the m× d matrix made of m line samples x1, . . . , xm belonging to the d-dimensional space
of features. Let Y ∈ {0, 1}m×k be the label matrix where k > 2 is the number of clusters. Each line of Y has
exactly one nonzero element equal to one, yij = 1 indicating that the sample xi belongs to the j-th cluster.
Let W ∈ Rd×d̄ be the projection matrix, d̄� d, and let µ be the k × d̄ matrix of centroids: Each line µ(j, :),
j = 1, . . . , k, is the model for all samples xi belonging to the j-th cluster (yij = 1). For a given W , the
clustering criterion can be cast as

1

2
‖Y µ−XW‖2F → min, (1)

where ‖.‖F is the Frobenius norm induced by the Euclidean structure on m × d̄ matrices. In contrast with
the Lagrangian LASSO formulation, we want to have a direct control on the value of the `1 constraint, so
we constrain W according to ‖W‖1 6 η (η > 0), where ‖.‖1 is the `1 norm of the vectorized d× d̄ matrix
of weights. The problem is to estimate both labels and centroids (Y, µ), together with the sparse projection
matrix W . A naive joint minimization of (1) in (Y, µ,W ) under the previous `1 constraint and the nonconvex
constraints on Y

yij ∈ {0, 1}, i = 1, . . . ,m, j = 1, . . . , d̄,
∑
j=1

yij = 1, i = 1, . . . ,m, (2)

admits trivial solutions consisting in k − 1 empty clusters and W = 0. To overcome this issue, we follow
an alternating scheme as in [Ding and Li(2007), Witten and Tibshirani(2010)]. (Another option would be
to devise a global convexification; see, e.g., [Flammarion et al.(2016)Flammarion, Palaniappan, and Bach].)
The first convex subproblem finds the best projection from dimension d to dimension d̄ for a given clustering,
while the second one is the standard k-means on the projected data.

Problem 1 For a fixed a clustering (Y, µ) (and a given η > 0),
1

2
‖Y µ−XW‖2F → min, ‖W‖1 6 η.

Problem 2 For a fixed projection matrix W ,
1

2
‖Y µ−XW‖2F → min, µ ∈ Rk×d̄and constraints defined by (2).

Gradient-projection splitting method. To solve Problem 1, we use a gradient-projection approach. This
method belongs to the class of splitting methods [Combettes and Pesquet(2011), Combettes and Wajs(2005),
Mosci et al.(2010)Mosci, Rosasco, Santoro, Verri, and Villa, Sra et al.(2012)Sra, Nowozin, and Wright] and
is designed to solve minimization problems of the form

ϕ(W )→ min, W ∈ C, (3)

using separately the convexity properties of the function ϕ on one hand, and of the convex set C on the other.
We use the following forward-backward scheme to generate a sequence of iterates:

Vn := Wn + γn∇ϕ(Wn), Wn+1 := PC(Vn) + εn, (4)

where PC denotes the projection on the convex set C (a subset of some Euclidean space). Under stan-
dard assumptions on the sequence of gradient steps (γn)n, and on the sequence of projection errors (εn)n,
convergence holds (see, e.g., [Bauschke and Combettes(2011)]).

Theorem 1 Assume that (3) has a solution. Assume that ϕ is convex, differentiable, and that∇ϕ is β-Lipschitz,
β > 0. Assume finally that C is convex and that∑

n

|εn| <∞, inf
n
γn > 0, sup

n
γn < 2/β.

Then the sequence of iterates of the forward-backward scheme (4) converges, whatever the initialization. If
moreover (εn)n = 0 (exact projections), there exists a rank N and a positive constant K such that for n > N

ϕ(Wn)− inf
C
ϕ 6 K/n. (5)
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In our case, ∇ϕ is Lipschitz with constant σ2
max(X) since ∇ϕ(W ) = XT (XW − Y µ), and the following

holds.

Corollary 1 For any fixed step γ ∈ (0, 2/σ2
max(X)), the forward-backward scheme applied to the Problem 1

with an exact projection on `1 balls converges with a linear rate towards a solution, and the estimate (5) holds.

The O(1/n) convergence rate of the algorithm can be speeded up to O(1/n2) using a FISTA step
[Beck and Teboulle(2009)]. In practice we use a modified version [Chambolle and Dossal(2015)] which
ensures convergence of the iterates.

Exact `1 projection. We denote by P 1
η (W ) the (reshaped as a d × d̄ matrix) projection of the vectorized

matrix W (:). An important asset of the method is that it takes advantage of the availability of efficient methods
[Condat(2016)] to compute the `1 projection. For η > 0, denote B1(0, η) the closed `1 ball of radius η in the
space Rdd̄ centered at the origin, and ∆η the simplex {w ∈ Rdd̄ | w1 + · · ·+wdd̄ = 1, w1 > 0, . . . , wdd̄ > 0}.
Let w ∈ Rdd̄, and let v denote the projection on ∆η of (|w1|, . . . , |wdd̄|). It is well known that the projection
of w on B1(0, η) is

(ε1(v1), . . . , εkd(vdd̄)), εj := sign(wj), j = 1, . . . , dd̄, (6)

and the fast method described in [Condat(2016)] is used to compute v. The complexity of the gradient part is
O(m× d), while complexity of the projection is O(d× d̄). Thus our algorithm is scalable and is tractable for
large data sets.

Clustering algorithm. The resulting alternating minimization is described by Algorithm 1. La-
bels Y are for instance initialized by spectral clustering on X , while the k-means computation
relies on standard methods such as k-means++[Arthur and Vassilvitski(2007)]. Similarly to the
approaches advocated in [Bach and Harchaoui(2008), De la Torre and Kanade(2006), Ding and Li(2007),
Witten and Tibshirani(2010)], our method involves non-convex k-means optimization for which convergence
towards local minimizers only can be proved [Bottou and Bengio(1995)]. In practice, we use k-means++
with several replicates to improve each clustering step. We note for further research that there have been recent
attempts to convexify k-means. As each step of the alternating minimization scheme decreases the Frobenius
norm in (1), which is nonnegative, one has

Proposition 1 The norm ‖Y µ−XW‖F converges as the number of iterates L in Algorithm 1 goes to infinity.

Algorithm 1 Alternating minimization clustering.
Input: X,Y0, µ0,W0, L,N, k, γ, η
Y ← Y0, µ← µ0, W ←W0

for l = 0, . . . , L do
for n = 0, . . . , N do
V ←W − γXT (XW − Y µ)
W ← P 1

η (V )
end for
[Y, µ]← k-means(XW, k)

end for
Output: Y,W

3 Application to single cell RNA-seq datasets

To compare our results we report accuracy, Adjusted Rank Index (ARI) [Lawrence and Phipps(1985)], Nor-
malized Mutual Information (NMI) and tSNE for 2D-visual evaluation for the five following methods:
PCA k-means, spectral clustering [Von Luxburg(2007), Ng et al.(2002)Ng, Jordan, and Weiss], SIMLR
[Wang et al.(2017)Wang, Zhu, Pierson, Ramazzotti, and Batzoglou], and Sparcl (we have used the R soft-
ware provided by [Witten and Tibshirani(2010)]), and our method. Moreover we report the processing times
using a 2.5 GHz Macbook Pro with an i7 processor. We compare algorithms on four scRNA-seq datasets:
Patel et al. [Patel(2014)] characterizes intra-tumoral heterogeneity and redundant transcriptional pattern in
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glioblastoma tumors, Klein et al. [Kiselev(2017), Klein(2015)] characterized the transcriptome of 2, 717 cells
(Mouse Embryonic Stem Cells, mESCs) across various conditions), Zeisel et al. [Kiselev(2017), Zeisel(2015)]
collected 3005 cells from the primary somatosensory cortex (S1) and the hippocampal CA1 region, Usoskin
et al. [Usoskin(2014)] collected 622 cells from the mouse dorsal root ganglion.

Figure 1: Left: the decay of the Frobenius norm for the four data sets versus the number of loops of the
alternating minimization scheme emphasizes the fast and smooth convergence of our algorithm. Right: these
results show that a minimum number of genes is required to get the best possible clustering accuracy.

Figure 2: Left: The The evolution of the number of selected genes versus the constraint η is a smooth
monotonous function. Right: ranked weight ‖W (j, :)‖ of selected genes.

Table 1: Ksparse outperforms SIMLR in term of accuracy on Usoskin, and Zeisel, Ksparse outperforms
SIMLR in term of computational time on large data bases Klein and Zeisel

Accuracy (%) Time (s)
Methods: PCA SIMLR [2] Sparcl [3] K-sparse PCA SIMLR [2] K-sparse

Patel (430 cells, k = 5) 76.04 97.21 94.18 98.37 0.81 8 10
Klein (2,717 cells, k = 4) 68.50 99.12 65.11 99.26 11 511 101
Zeisel (3,005 cells, k = 9) 39.60 71.85 65.23 83.42 11 464 74
Usoskin (622 cells, k = 4) 54.82 76.37 57.24 95.98 1.06 15 53

4 Conclusion

The proposed method significantly improves the results of Sparcl and SIMLR in terms of accuracy. We also
note that K-sparse and Sparcl provide built-in feature selection while SIMLR requires supplementary
processing. Complexity of K-sparse is linear with the number of samples, so it scales up to large datasets,
contrary to SIMLR and Sparcl (Computing the kernel for SIMLR or optimizing the values of the Lagrangian
parameter using permutations for Sparcl are computationally expensive).
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