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Abstract

We analyze variants of the classic 2-coordinate sequential minimal optimization (SMO)
algorithm for training support vector machines (SVMs) with an unregularized bias. We
show these variants achieve a linear convergence rate, improving on previous rates, which
were sublinear unless strong-convexity was assumed. We also show that they identify
the final set of support vectors in a finite number of iterations, which is the first time a
manifold identification property has been shown for any coordinate descent method with
non-separable constraints.

1 Motivation

SVMs remain widely-used in many applications, and the SMO dual 2-coordinate ascent method [5] has been a
popular method for fitting these models for around 20 years. Unlike modern stochastic dual coordinate ascent
(SDCA) methods, SMO allows an unregularized bias which is desirable in applications with unbalanced class
labels. This bias complicates the analysis of SDCA methods because it leads to a linear equality constraint
across the variables. While previous analyses of SMO show that it converges with a sublinear rate in general,
this work shows that this type of algorithm can achieve a linear convergence rate as in SCDA methods. Further,
under mild assumptions we show that these variants identify the support vectors in a finite number of iterations.

2 Problem Definition

The general problem we consider is

arg min
x∈X

f(x), (1)

where X is a set of the form {x | l ≤ x ≤ u,Ax = b} with l and u being upper and lower bounds on the
variables, and with the m× n matrix A and m× 1 vector b defining linear constraints such that m ≤ n. We
assume that the gradient∇f is Lipschitz continuous, and we require that the problem satisfies the proximal-PL
(prox-PL) inequality [1] which is this case can be written as

1

2
Dg(x, L) ≥ µ(f(x)− f∗), (2)

for all x ∈ X , for some µ > 0 and with Dg(x, µ) ≡ −2µ arg miny∈X {〈∇f(x), y − x〉+
L

2
‖y − x‖2}]. The

dual of the SVM problem with an unregularized bias takes the form (1) for a convex f with a Lipschitz-
continuous gradient. Further, Necoara et al. [3] show that this dual satisfies the quadratic growth (QG) property,
which combined with convexity implies that the proximal-PL inequality is satisfied [1].

3 Block Coordinate Descent for Linearly Coupled Constraints

Block coordinate descent methods are iterative optimization algorithms, that on each iteration choose a
block of variables among a candidate set of blocks B, and then updates this block of variables. Without the
linear equality constraints, the constraints would affect each variable individually and linear convergence
of block coordinate descent for problem (1) would be implied by the prior work [1]. However, the equality
constraints introduce dependencies between all variables that must be maintained during the updates. Our
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analysis will follow the analysis of Necoara and Patrascu [2] closely, and as with prior work we maintain the
equality constraints by constructing the blocks so that the supports of all so-called “elementary vectors” of
the null-space of A are contained in the set of candidate blocks B [6], [2]. We first introduce the notion of an
elementary vector.

Definition 1. Let d, d′ ∈ Rn. Then d′ is conformal to d if

supp(d′) ⊆ supp(d) and d′jdj ≥ 0, ∀j = 1, ..., n.

Definition 2. For A ∈ Rm×n and m ≤ n, an elementary vector of null(A), is a vector d ∈ null(A) such that

∀d′ ∈ null(A) that are conformal to d, supp(d′) = supp(d).

Below we give two properties used in prior works that will prove useful [6], [2].

Lemma 1. If d is an elementary vector of null(A), then |supp(d)| ≤ rank(A) + 1 ≤ m+ 1. Otherwise, d
has a conformal realization

d =
∑r

j=1 dj

where r ≥ 1 and dj are elementary vectors conformal to d, j = 1, ..., r.

Lemma 2. Let the conformal realization of d be as defined above, then for any coordinate-wise separable and
convex function h, ∑r

j=1(h(x+ dj)− h(x)) ≤ h(x− d)− h(x).

For the SVM dual objective (with unregularized bias) Lemma 1 implies that we can use all pairs of variables as
the blocks, B = {{i, j}|i, j ∈ {1, 2, ..., n}, i 6= j}, as used by SMO. Under other assumptions, Tseng & Yun
have previously shown an asymptotic linear convergence rate when the block to update is chosen according to
the greedy Gauss-Southwell-q (GS-q) rule [6]. More recently, Necoara & Patrascu show a non-asymptotic
linear convergence rate for randomized block selection when the proximal-PL condition is replaced by the
stronger condition of strong-convexity [2], but in general the SVM problem is not strongly-convex. In the next
section, we give a simple proof showing that a non-asymptotic linear convergence rate holds under the weaker
assumption of the proximal-PL inequality.

3.1 Block Selection and Updates

We focus on the case where we choose the block to update bk uniformly at random from the set of possible
blocks B, but we note that analyzing the greedy GS-q rule only involves a small change. The classic SMO
method picks coordinates based on violation of the Karush-Kuhn-Tucker conditions, and makes use of several
heuristic that makes analyzing it more difficult. Given the block bk ∈ B that we choose on iteration k, we’ll
consider updates of the form

xk+1 = arg min
{y

bk
| y∈X}

{
f(xk) + 〈∇f(xk), y − xk〉+

L

2
‖y − xk‖2Hk

}
. (3)

Here, Hk is a matrix satisfying the generalized inequality ∇2f(xk) � Hk � LI. In the SMO method (where
the objective is quadratic) we set Hk = ∇2f(xk) which corresponds to a projected-Newton update, while
choosing Hk = LI leads to a projected-gradient update of the chosen block.

4 Convergence Analysis

Our argument closely follows the analysis of Necoara and Patrascu [2]. First we note that it follows from
Lipschitz-continuity of the gradient and the well-known descent lemma that

E[f(xk+1)] ≤ E[f(xk) + 〈∇f(xk), xk+1 − xk〉+
1

2
‖xk+1 − xk‖2Hk

] (4)

= f(xk) +
1

|B|

|B|∑
i=1

[
min

{ybi
| y∈X}

{
〈∇f(xk), y − xk〉+

1

2
||y − xk||2Hk

}]
. (5)
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Reparameterizing with dbi = ybi − xkbi and using the property Hk � LI, we get

(5) ≤ f(xk) +
1

|B|

|B|∑
i=1

[
min

{dbi
| xk

bi
+dbi

∈X}
{〈∇fbi(xk), dbi〉+

L

2
‖dbi‖2}

]
. (6)

Next, we define specific d′bj values where j = i1, i2, ..., ir and r ≤ |B| as follows. Let

d′ = arg min
{d | xk+d∈X}

{
〈∇f(xk), d〉+

L

2
‖d‖2

}
. (7)

If d is an elementary vector, then d is in some block bi1 , and we can let r = 1 and choose d′bi1 = d′. Otherwise,
we can choose specific d′bj values to be the elementary vectors that make up a conformal realization of d′

which exists by Lemma 1. If the blocks are not minimal, we additionally combine the elementary vectors with
supports in the same block.
In the first case, xk + d′bi1

∈ X holds by default. In the second case, d′bj being elementary vectors of null(A)

or summations of them implies d′bj ∈ null(A). In addition l − x ≤ d′ ≤ u− x implies l − x ≤ d′bj ≤ u− x
due to conformality. Thus, for all j = i1, i2, ..., ir, d′bj satisfies xk + d′bj ∈ X , and using the property that the
minimum is less than or equal to a specific instance, we get

(6) ≤ f(xk) +
1

|B|

[
〈∇f(xk),

r∑
t=1

d′bj 〉+

r∑
t=1

L

2
‖d′bj‖

2

]
. (8)

Then by Lemma 2, we get

(8) ≤ f(xk) +
1

|B|
min

{d | xk+d∈X}

{
〈∇f(xk), d〉+

L

2
‖d‖2

}
(9)

= f(xk) +
1

|B|
min
y∈X

{
〈∇f(xk), y − xk〉+

L

2
‖y − xk‖2

}
(10)

≤ f(xk)− 1

|B|
µ

L
(f(xk)− f∗), (11)

where in the last line we apply the proximal-PL inequality. We can subtract f∗ from both sides and rearrange
the terms, and apply this recursively to get the linear convergence result that

E[f(xk)]− f∗ ≤
(

1− µ

|B|L

)k

(f(x0)− f∗), (12)

5 Sequential Minimal Optimization

Next, we explain the explicit updates for a given block b ∈ B for SMO using the notations above. Recall that
the blocks are all pairs of coordinates {i, j}. Without the inequality constraints in (3), we get the minimizers

y∗i = xi −
1

Hk
ii +Hk

jj ± 2Hk
ij

[∇if(x)±∇jf(x)] (13)

y∗j = xj −
1

Hk
jj +Hk

ii ± 2Hk
ij

[∇jf(x)±∇if(x)] (14)

where Hk
ij = ∇2

ijf(xk) and ± is the sign of −αi · αj , where αi for i = 1, 2, ..., n are constants ∈ {−1, 1}.
We can add back the inequality constraints by clipping the minimizers due to convexity. The resulting updates
are

xk+1
i =


Li y∗i < Li

y∗i Li ≤ y∗i ≤ Ui

Ui y∗i > Ui

xk+1
j =


Lj y∗j < Lj

y∗j Lj ≤ y∗j ≤ Uj

Uj y∗j > Uj

(15)

where the bounds are

Li =

{
max{0, xki − (c− xkj )} αi = αj

max{0, xki − xkj } αi 6= αj
Ui =

{
min{c, xki + xkj } αi = αj

min{c, xki + (c− xkj )} αi 6= αj
(16)

for xk+1
i , and the bounds for xk+1

j have the indices i and j flipped. Under strong-convexity, we get
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∇2
iif(xk) +∇2

jjf(xk)± 2∇2
ijf(xk) > 0 for all i, j = 1, ..., n, i 6= j

so the updates are well formed for Hk = ∇2f(xk). Without strong-convexity, we can avoid the case where
Hk

ii +Hk
jj ± 2Hk

ij = 0 by using Hk = LI instead, in which case Hk
ii +Hk

jj ± 2Hk
ij = 2L.

5.1 Support Vector Identification

We can also show that SMO can detect the support vectors in a finite number of iterations under mild
conditions.The idea of this argument stems from Nutini et al. [4]’s work. We assume that the set of indices
that are on the active set for any x∗ in the solution set X∗ is unique. Let this set of coordinates be Z∗. We
introduce the notion of an active set below.
Definition 3. The active set for SVMs for x ∈ X is the set

Z = {i | xi = 0 or c}.

In addition, we assume that for all x∗ ∈ X∗ and i ∈ Z∗, ∇if(x∗) 6= 0, and |∇if(x∗)| 6= |∇jf(x∗)| for all
j = 1, ..., n such that j 6= i. Lastly, we assume that either Hk = LI, or Hk

ij = ∇2
ij(f(xk) and for all i 6= j

that Hk
ii +Hk

jj ± 2Hk
ij > 0. From the above analysis, and using the QG property, we get

E[‖xk − xkproj‖2] ≤ 2

µ
E[f(xk)− f∗] ≤ 2

µ
ρk[f(x0)− f∗] (17)

where xkproj is the projection of xk onto the solution set X∗ and ρ is a constant, 0 ≤ ρ < 1. Thus, for all
δ > 0, there exists a finite number k̄ such that ‖xk − xkproj‖ ≤ δ, ∀k > k̄ almost surely.
We choose k̄′ and δ′ = min{ζ, ξ}, where

ζ = min
i∈Z,j=1,...,n,

x∗∈X∗

{
|∇if(x∗)±∇jf(x∗)|

8L

}
and ξ = min

j /∈Z∗,
x∗∈X∗

{
x∗j
2
,
c− x∗j

2

}
.

Then we can prove the following.
Lemma 3. Assume for i ∈ Z∗, k′ > k̄′, that j is on the active set on iteration k′ for all j ∈ Z∗ where
|∇jf(x∗)| > |∇if(x∗)|. There exists a finite K ′, K ′ > k′ such that if we pick i on iteration K ′,

xki = 0 or c for all k > K ′.

We omit the proof for space reasons, but the idea is that if i is picked with any j /∈ Z∗, then i is guaranteed to
move onto the active set. Otherwise, if j ∈ Z∗, then i is guaranteed to not move further away from it. We can
use this lemma to show that after iteration k̄′, there is a finite number of additional iterations until all support
vectors are detected by applying it recursively, by induction on the decreasing order of |∇if(x∗)|, for i ∈ Z∗.
For i = argmax

i∈Z∗
{|∇if(x∗)|}, the assumption in this lemma holds by default, so the lemma applies. Then

assuming that this lemma holds for all j ∈ Z∗ such that |∇jf(x∗)| > |∇if(x∗)| and applying this lemma
again for i, this property holds for i and remains to hold for j. As a result, for all i ∈ Z∗, xi gets set and kept
at 0 or c after a finite number of steps almost surely, and we can pick out the indices i that are not on the active
set.

6 Discussion

Although our motivation was providing a convergence analysis of the SMO algorithm, our convergence result
is much more general and applies in a variety of other settings. For example, our analysis would apply to
optimization with a probability simplex constraint. It would likely also cover standard formulations of support
vector regression, multi-class SVMs, and margin-based ranking methods.

4



References
[1] H. Karimi, J. Nutini, and M. Schmidt. Linear convergence of gradient and proximal-gradient methods under

the polyak-łojasiewicz condition. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 795–811. Springer, 2016.

[2] I. Necoara and A. Patrascu. A random coordinate descent algorithm for optimization problems with
composite objective function and linear coupled constraints. Computational Optimization and Applications,
57(2):307–337, 2014.

[3] I. Necoara, Y. Nesterov, and F. Glineur. Linear convergence of first order methods for non-strongly convex
optimization. arXiv preprint arXiv:1504.06298, 2015.

[4] J. Nutini, M. Schmidt, and W. Hare. “active-set complexity" of proximal gradient: How long does it take
to find the sparsity pattern? NIPS Optimization Workshop, 2017.

[5] J. Platt. Sequential minimal optimization: A fast algorithm for training support vector machines. 1998.
[6] P. Tseng and S. Yun. Block-coordinate gradient descent method for linearly constrained nonsmooth

separable optimization. Journal of Optimization Theory and Applications, 140(3):513, 2009.

5


	Motivation
	Problem Definition
	Block Coordinate Descent for Linearly Coupled Constraints
	Block Selection and Updates

	Convergence Analysis
	Sequential Minimal Optimization
	Support Vector Identification

	Discussion

