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Abstract

Constrained least squares is a ubiquitous optimization problem in machine learning, statistics,
and signal processing. While projected gradient descent is usually an effective algorithm for
solving constrained least squares at scale, the projection operator is often the computational
bottleneck, especially for complicated constraints. To circumvent this limitation, we extend
recent work on approximate projections to a significantly broader range of constrained
least squares problems. Our new variant of projected gradient descent is able to utilize
approximate projections for any condition number and any conic constraint set (including
non-convex cones).

1 Introduction

Constrained optimization is a core element in machine learning, statistics, and signal processing. Over the
past decade, these fields have developed a sophisticated understanding of various constraint sets, both from
an optimization perspective and from a statistical point of view. The prototypical problem in this area is
constrained least squares: given a data or measurement matrix X ∈ Rn×d, observations y ∈ Rn, and a
constraint set C ⊆ Rd, the goal is to find a minizer of

min
θ∈C
‖Xθ − y‖22 . (1)

For various constraint sets C, this optimization problem can represent important estimators such as (kernel)
ridge regression, the Lasso, and nuclear norm minimization. The success of these methods leads to a
fundamental question:

For what constraint sets can we solve least squares efficiently?

We make progress on this question by introducing a new version of projected gradient descent that utilizes
approximate projections [8]. Approximate projections relax the usual notion of projecting onto a set by
allowing a relative approximation error. Prior work has shown that approximate projections can be significantly
faster than their exact counterparts for many natural constraint sets (see Table 1). In some settings such
as graph sparsity, exactly projecting onto the constraint set is an NP-hard problem, while an approximate
projection can still be computed in nearly-linear time [9].

Although the aforementioned papers establish significantly faster running times, their results are limited to the
RIP (Restricted Isometry Property) setting that is common in the compressive sensing literature [7]. From
an optimization point of view, this is a highly restrictive assumption as it requires the condition number of
the objective function, i.e., the quadratic loss ‖Xθ − y‖22, to be close to 1. Moreover, prior results require the
condition number to improve even more as the projections become more approximate [8, 10].

In this paper, we generalize the approximate projection framework along multiple directions:

• We generalize the definitions of approximate projections to any conic constraint set (even non-convex
cones).
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Constraint set Best known time complexity
of an exact projection

Best known time complexity
of an approximate projection

Sparsity O(d) O(d)

Low-rank matrices O(d1.5) Õ(r · d) [10]

Tree sparsity [5] O(d2) [6] Õ(d) [2]

Graph sparsity [11] NP-hard [9] Õ(d) [9]

Group sparsity [15] NP-hard [3] Õ(d) [12]

Table 1: The time complexity of exact and approximate projections for various constraint sets. The variable d
denotes the size of the input (the dimension of the vector θ). For low-rank matrices, the stated time complexites
are for matrices with dimension

√
d×
√
d. To simplify the expressions, we omit logarithmic factors in the

runnin times. In all cases beyond simple sparsity, approximate projections are significantly faster (assuming
P 6= NP, even by a super-polynomial amount).

• We introduce a new variant of projected gradient descent (2PHASE-PGD) that can be combined with
approximate projections for any condition number and any conic constraint set.
• We prove that 2PHASE-PGD achieves optimal statistical guarantees (up to constant factors) in all

relevant problem parameters, including the condition number.

Interestingly, our new algorithm 2PHASE-PGD combines ideas from both the Frank-Wolfe algorithm and
projected gradient descent. The outer loop of 2PHASE-PGD is essentially projected gradient descent, and
each iteration of the outer loop calls an inner subroutine that is very similar to the Frank-Wolfe algorithm. The
combination of these two parts allows our algorithm to utilize approximate projections without restrictions on
the constraint sets and condition numbers.

1.1 Related work

Due to the vast literature on constrained least squares estimators, we only mention the most closely related
works here.

The combination of approximate projections that we utilize in our work was first introduced in the model-based
compressive sensing setting [8], where the goal is to add additional sparsity-based constraints to compressive
sensing algorithms [4]. The authors later generalized their approach to general union-of-subspace models
that include low-rank matrices [10]. However, all of their algorithms rely on very well conditioned objective
functions (the RIP setting). Our algorithm lifts this restriction and applies to any condition number (and any
conic constraint set).

The paper [14] also considers projected gradient descent for general constraint sets that can be non-convex.
However, the goals of the paper are somewhat different from ours: the authors focus on establishing sharp
constants for isotropic measurement setups or data matrices, which corresponds to the well-conditioned regime
(RIP). In contrast, our focus is on the regime where the condition number can be arbitrary. Moreover, our
algorithm works with approximate projections.

Finally, the paper [13] also considers iterative thresholding methods (i.e., projected gradient descent) in the
regime where the condition number can be arbitrary. However, the sample complexity does not match the
optimal rates achieved by the Lasso estimator because the statistical rate has a quadratic dependence on the
condition number. Our two-phase variant of projected gradient descent addresses this shortcoming. Moreover,
our algorithm works with approximate projections and arbitrary conic constraint sets.

2 Results

We state our results in the common setting where we assume restricted strong convexity and smoothness [1].
In contrast to the classical (global) notions of strong convexity and smoothness, the restricted counterparts only
hold over the constraint set (or a suitably relaxed version of the constraint set). This weakened assumption
is crucial because the concentration phenomena in statistical settings are only sufficient to guarantee strong
convexity and smoothness over a subset of the entire parameter space.
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Definition 1 (Restricted smoothness). Let C be a cone. Then a differentiable convex function f has restricted
smoothness L over C if, for every point x ∈ Rd and every vector u ∈ C,

〈∇f(x+ u)−∇f(x), u〉 ≤ L‖u‖22.

Note that for a quadratic function 1
2‖Ax− b‖

2
2, this is equivalent to ‖Au‖22 ≤ L‖u‖

2
2 for every u ∈ C.

Definition 2 (Restricted strong convexity). Let C be a cone. Then a differentiable convex function f has
restricted strong convexity ` over C if, for every point x ∈ Rd and every vector u ∈ C,

f(x+ u) ≥ f(x) + 〈∇f(x), u〉+
`

2
‖u‖22.

For a quadratic function 1
2‖Ax− b‖

2
2, this is equivalent to ‖Au‖22 ≥ `‖u‖

2
2 for every u ∈ C.

2.1 Approximate projections

Next, we introduce our new definitions of “head” and “tail” approximations, which are two complementary
notions of approximate projections. These relaxed projections are the only way our algorithm 2PHASE-PGD
interfaces with the constraint sets.1

Definition 3 (Head approximation). Let C?, CH ⊆ Rd be two cones and let cH ∈ R. Then an (C?, CH, cH)-
head approximation satisfies the following property. Given any vector g ∈ Rd, the head approximation returns
a unit vector θ ∈ CH ∩ Sd−1 such that

〈g, θ〉 ≥ cH · max
θ′∈C?∩Sd−1

〈g, θ′〉 .

Definition 4 (Tail approximation). LetC?, CH ⊆ Rd be two cones and let cT ∈ R. Then an (C?, CT , cT )-tail
approximation satisfies the following property. Given any vector θin ∈ Rd, the tail approximation returns a
vector θ ∈ CT such that

‖θin − θ‖2 ≤ cT · min
θ′∈C?

‖θin − θ′‖2 .

In addition to a relaxed approximation guarantee (cH < 1 and cT > 1, respectively), the above definitions
also allow for approximation in the output sets CH and CT . As long as CH and CT are comparable to C?
(say sparsity 2 · s instead of sparsity s), this relaxation affects the sample complexity only by constant factors,
yet enables polynomially faster algorithms in cases such as graph sparsity [9].

2.2 Main results

Before we state our main result, we briefly introduce some notation. For two sets C1 and C2, we denote the
Minkowski sum by C1 + C2. For an integer m, we write m× C for the m-wise Minkowski sum of a set with
itself (i.e., C + C + C + · · ·+ C a total of m times).
Theorem 5 (2PHASE-PGD). There is an algorithm 2PHASE-PGD with the following properties. Assume
that 2PHASE-PGD is given

• a (C?, CT , cT )-tail approximation such that θ? ∈ C?, and

• a (C? − CT , CH, cH)-head approximation.

Then let

k = Θ

(
(1 + cT )2 · LH

c2H · `all

)
and assume that f has restricted smoothness LH over CH and restricted strong convexity `all over the sum of
C? with the negations of CT and k copies of C, i.e., `all = `C?−CT−k×C .

For a given ε > 0 and R > ‖θ?‖2, 2PHASE-PGD then returns an estimate θ̂ such that

‖θ̂ − θ?‖22 ≤ max

(
64 · (1 + cT )2

`all
max

θ′∈(C?−CT −1/c2H×C)∩Sd−1
〈∇f(θ?), θ′〉, εR

)
.

The time complexity of 2PHASE-PGD is dominated by O(log 1/ε) calls to the tail approximation and
O(k log 1/ε) calls to the head approximation and the gradient oracle, respectively.

1To avoid confusion: in this paper, C? does not denote a polar cone, but instead the constraint set corresponding to the
solution θ?.
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Since the theorem above is somewhat technical, we briefly instantiate it in the standard compressive sensing
setting to illustrate the bounds. Due to space constraints, we unfortunately defer a more thorough discussion
of the various parameters to the full version of the paper.

Let C?, CH, CT each be the set of s-sparse vectors. Since we can project onto s-sparse vectors in linear time,
we have cH = cT = 1. Hence our algorithm requires restricted smoothness and strong convexity only over
sets that are O(s)-sparse, for which we can invoke standard results for RIP matrices [7]. The RIP setting also
implies that `all ≈ `H ≈ 1. Together, this yields the standard bound ‖θ̂ − θ?‖22 ≤ O(‖e‖2) for a noise vector
e after a sufficient number of iterations (so that the εR terms is negligible).

3 Algorithm

Algorithms 1 and 2 contain the two main parts of our new algorithm. As mentioned before, Algorithm
1 closely resembles the Frank Wolfe algorithm (conditional gradient method). Algorithm 2 is essentially
projected gradient descent, but with INNERPHASE instead of a standard gradient step. We defer a more
detailed discussion of these algorithms to the full version of the paper.

Algorithm 1 INNERPHASE

1: function INNERPHASE(θin, r, ρ)
2: k ←

⌈
8LH

ρ·c2H

⌉
3: θ(0) ← 0
4: for i← 0, . . . , k − 1 do
5: g(i+1) ← HEADAPPROX(−∇f(θin + θ(i)))

6: θ̃(i+1) ← r
cH
· g(i+1)

‖g(i+1)‖2
7: θ(i+1) ← γ(i) · θ̃(i+1) + (1− γ(i)) · θ(i)

8: return θin + θ(k)

Algorithm 2 2PHASE-PGD
1: function 2PHASE-PGD(R, ε)
2: T ←

⌈
log2

1
ε

⌉
3: θ(0) ← ~0
4: r(0) ← R
5: for t← 0, . . . , T − 1 do
6: θ̃(t+1) ← INNERPHASE(θ(t), r(t))

7: θ(t+1) ← TAILAPPROX(θ̃(t+1))

8: if ‖θ(t+1) − θ(t)‖2 >
3
2r

(t) then return θ̂ ← θ(t)

9: r(t+1) ← r(t)

2

10: return θ̂ ← θ(T )
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