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Abstract

We establish lower bounds on the complexity of finding e-stationary points of smooth,
non-convex, high-dimensional functions. For functions with Lipschitz continuous pth
derivative, we show that all algorithms—even randomized algorithms observing arbitrarily
high-order derivatives—have worst-case iteration count (e~ (P*1)/P)_ Our results imply
that the O(e=2) convergence rate of gradient descent is unimprovable without additional
assumptions (e.g. Lipschitz Hessian), and that cubic regularization of Newton’s method
and pth order regularization in general are similarly optimal. Additionally, we prove that
deterministic first-order methods, even applied to arbitrarily smooth functions, cannot
achieve convergence rates better than O(e~%/%), which is within e~ /> of the recently

established 6(6_5/ 3) rate for accelerated gradient descent.

1 Introduction

Finding the global minimum of a general smooth (non-convex) function f is computationally intractable [17,
§1.6], and even deciding whether a point x is a local minimum of f is in some cases be NP-complete [16].
Nevertheless, optimization methods designed for minimizing such general smooth functions are in widespread
use [22]. The most common measure of performance for such methods is the time required to find an e-
stationary point, i.e. a point 2 such ||V f(x)|| < e. In this context, stationarity is often—though certainly not
always—a good proxy for local optimality [14, 18, 22].

Theoretical guarantees on the number of function/derivative evaluations required to find e-stationary points
often feature two appealing characteristics. First, they are polynomial in 1/¢ and measures of the function’s
regularity. Second, they do not depend on the dimension of the function’s domain. The best-known method
with such dimension-free rate of convergence is gradient descent [18], which finds an e-stationary point in at
most 2L, Ae~2 iterations for functions f with L;-Lipschitz gradient and f(z(?)) — inf, f(z) < A.

Developing algorithms with improved e dependence, under different smoothness assumptions, is an area of
active research [21, 20, 4, 5, 1, 6, 2]. In this paper we take a complimentary viewpoint, and provide lower
bounds on the best e dependence any algorithm can achieve, for several function and algorithm classes. Table 1
summarizes the known upper bounds and our new lower bounds.

Cartis et al. [9, 10, 11] consider lower bounds on the evaluation complexity of specific algorithms and certain
structured algorithm classes. In contrast, we present the first lower bounds for finding stationary points of
high-dimensional functions applying to (i) all randomized high-order methods (with access to all derivatives
of a function f at a query point z) or (ii) all deterministic first-order methods (with access only to gradient and
function value). Our results draw deeply from the literature on lower bounds for finding global minimizers of
convex functions [17, 18, 23].

*This is an extended abstract of a two-part paper sequence [7, 8] with preprints available on arXiv. Throughout, we use
P1.k and Pi1.k to refer to numbered item k in the papers [7] and [8] respectively.

OPTML 2017: 10th NIPS Workshop on Optimization for Machine Learning (NIPS 2017).



Table 1: The number of iterations required to find e-stationary points of high dimensional functions

f has Lipschitz Upper bound Lower bound Gap
A pth order derivative O (e=@tV/P) (4] Q(e-@*D/P) Thm. 1  O(1)
B gradient and Hessian O (774 [6] Q (e7'%/7) Thm. 2 O (e71/28
C gthderivative Vg <p,p >3 O (e7%/3) [6] Q (%) Thm. 2 O (e71/19)
D gradient + f convex O(eh)t Qe )t O (1)

Notes The bounds apply for functions f with f(z(?)) — inf, f(2) < O(1) for initialization z(*). In row
A the upper bounds are achieved by deterministic pth-order methods and the lower bounds apply to all
randomized methods of arbitrary order. In rows B-D the upper (lower) bounds are achieved by (apply to all)
deterministic first-order methods.  The bounds in row D differ from the standard rates for convex optimization
since they do not assume bounded distance to argmin f; see Section P11.3 for further discussion.

2 Lower bound framework

Here we provide a condensed version of Sections PI1.2 and P1.3 in [7], defining notation and key concepts.

Function classes Measures of function regularity are crucial in the design and analysis of optimization
algorithms, and smoothness (continuity of derivatives) is particularly important [19, 21, 4]. Accordingly, for
every p > 1 and parameters A, L, > 0, we consider the function class

Fp(A, Lp)
consisting of all functions f : R? — R (for any d € N) with L,-Lipschitz continuous pth order derivative and

satisfying f(0) — inf, f(z) < A. Our results are “dimension-free”: for any accuracy € we construct a hard
instance f : RY — R for some d € N, but d must grow polynomially with 1/e.

Oracle model For any dimension d € N, an algorithm A takes f : R? — R to a sequence of iterates in R?.
We let A[f] = {2(¥}2, denote the sequence =(*) € R? of iterates that A generates when operating on f. We
limit the algorithm’s access to the function f by means of an information oracle, which reveals only the value
of f and its derivatives at the queried point. In a pth-order deterministic algorithm the ith iterate z(*) is some
fixed function of {V2f(z()) |0 < ¢ < p,1 < j < i}, where for ¢ € N, V9 f(z) denotes the gth derivative of

f at point x (an order ¢ tensor). We denote the class of pth-order deterministic algorithms by Aé’g and let

Adet = UpeNAgg. Randomized algorithms are mixtures of A € Aget [17].

Worst-case complexity As we consider finding stationary points of f, the natural measure of performance
is the number of iterations required to find a point = such that |V f(2)| < . Thus for a sequence {z™® };cn
we define the complexity of {x™},cn on £,

Te({x(t)}teN, f) == inf {t eN| HVf(x(t))H < e} )

With mild abuse of notation, we let T, (/—\, f) =T, (A[ ,f ) denote the complexity of A operating on f, and
we define the minimax complexity of algorithm class A operating on function class F by

(A, F) := inf Tc(A, f).
Te(A.F) = juf sup Te(A, f)
With minor extension for randomized algorithms, this is the quantity we bound in Table 1.

Zero-respecting algorithms For a vector v € R? we let supp {v} := {i € {1,...,d} | v; # 0} denote the

support (non-zero indices) of v. Extending the definition, for an order k tensor T € R‘X’kd, let supp {T'} :=
{ie{l,....d}| 31, je—18t. Tij,... jr_, 7 0} We say an algorithm A is pth order zero-respecting if
for any f : R¢ — R the sequence A[f] = {z(®)},cy satisfies

supp {x(t)} € Ugeqt,....pp Us<y supp {qu(:z:(s))} for each t € N.

For p = 1, this definition is equivalent to the requirement that xg-t) = 0 for every j such that V; f (x(s)) =0
for all s < t. We denote the class of pth order zero-respecting algorithms by A§’,’ ), and let Ay = UpeNAg) ),



Common first- and second-order optimization methods are zero-respecting [13, 15, 22, 21, 12]. Our notion of
zero-respecting algorithms is a generalization of the assumption that first-order methods only query points in
the span of the gradients they observe [18, 3]. Zero-respecting algorithms form the backbone of our analysis.

Zero-chains Nesterov [18] introduced the notion of ‘“chain-like” functions, which are instrumental in
establishing lower bounds for optimization [18, 3, 23]. We say f : RY — R is a pth order zero-chain if
for any z € R? with supp {2} C {1,...,i — 1} we have Uycpsupp {V4f(z)} C {1,...,i}. Crucially,
zero-respecting algorithms must “discover” coordinates of such functions one by one.

Proposition 1. For any p > 1, let f be a pth order zero-chain and let A € A§€). Let {x(}eny = A[f] be the

iterates of A operating on f. Then x;t) = 0 for everyt < d and every j > t.

Lower bound strategy To lower bound 7 (Azr, F ) for any function class F, we find a function f : R” — R
such that: (i) f is a zero-chain, (ii) f € F, and (iii) |V f(z)|| > € for every € R with 27 = 0. By
Proposition 1, this immediately implies that every zero-respecting algorithm requires at least 7' 4 1 iterations
to find an e-stationary point of f, and so 7¢ (Ay, F) > T.

From deterministic to zero-respecting algorithms Despite their common vulnerability to zero-chains,
zero-respecting algorithms are at least as efficient as deterministic algorithms.

Proposition 2. For any p > 1 and any function class F considered in this paper, T, (Aég?[ F ) > 7:( Ef’), F )
Consequently, Z(Adetv .7:) > 7;(Azr; -7'—)-

Proposition 2 builds on the classical notion of a resisting oracle with rotation invariance [17, Ch. 7].

3 Lower bounds for high-order methods

‘We now consider an oracle providing derivatives of arbitrarily high order at the queried point; i.e. algorithm
classes Aget and Ay For such algorithms, we show that the hardness of finding stationary points depends
fundamentally on the maximum degree of smoothness available, by rescaling a single ‘hard’ function. For
T € Nand d > T, we define this (unscaled) hard f7 : R¢ — R by

T
fr(@) = =0 (1)@ (@1) + Y _{V (—a;1) (=) = ¥ (1) @ (2:)} e9)
=2

where the component functions ¥ and ¢ are

V() = 0 1 z<1/2 and ®(z) = \/E/I e~z dt.
eXp(lfm) I’>1/2 oo

We illustrate the construction (1) in Fig. P1.1 in [7]. Happily, fr fulfills the three requirements of the lower
bound strategy we outlined in Section 2 (see Lemmas P1.2 and P1.3).
Lemma 1. For any T € N, the function fr satisfies the following.

i. Zero-chain For everyp > 1, fr is a pth order zero-chain.

ii. Membership in function class fr € F (12T,4¢,) for every p > 1, where £, < e>°P18P+<P for some
numerical constant ¢ < Q.

iii. Large gradient For every x € R such that |z;| < 1 for some i € {1,...,T},
IVir@)| = [Vir@)]l, > 1.

For general accuracy ¢, value bound A and pth order Lipschitz parameter L,,, we establish our lower bounds
by the following scaling argument. Let f(z) = (L,/¢,)o?*! fr(x /o), where o > 0 is a scale parameter to
be determined. By Lemma L.ii, taking 7' = |A/ (12(L,/¢,)o?T") | guarantees f € F,(A, L) for any o.
By Proposition 1 and Lemma 1.i, every A € A, operating on f produces iterates (1), 2(?), ... such that
x(Tt) = 0 for every t < T. Consequently, Lemma 1.iii guarantees that HVf(x(t))H > (Ly/¢p)o? for every

t < T. Choosing o such that (L, /¢,)o” = € and substituting back to our choice of 1" establishes the following
result (where we invoke Proposition 2).



Theorem 1. There exists a numerical constant ¢ < oo and £, < €-5P logp+ep sych that the following lower
bound holds for all p € N. Let A, L,, and € be positive. Then

A (LN\Y? s
Te(Adet, (A, L)) > Te(Aar, Fp(A, Ly)) = — (e) e
14

Lower bounds for randomized algorithms Adopting the approach of Woodworth and Srebro [23], we can
extend Theorem 1 to the class Aang of randomized local algorithms, establishing that 7, (Arand, Fo(A, Lp)) pe

AL,l,/ Pe=(14p)/P with an appropriate probabilistic definition of randomized complexity; see Section P1.5.
Unfortunately, this technique cannot distinguish high-order methods from first-order methods; it either applies
to every algorithm in A gnq or not at all (see Section P11.6.2). Therefore, we restrict our discussion in the
following section to deterministic (or randomized, zero-respecting) first-order methods.

4 Lower bounds for first-order methods

Given the scalability of first-order methods to high dimensions, it is important to understand their complexity.
Consequently, we turn to an oracle model providing only function values and gradients at the queried point
and investigate algorithm classes Aég and .Ag). To make the lower bounds more powerful, we consider the
more restricted function class

fl;p(A, Ll, ey Lp) = mqe{l

Recent work [1, 5, 6] proposes first-order methods with improved performance guarantees for functions in
these classes (see Table 1). Here we provide nearly matching lower bounds.

As in the previous section, we define an unscaled function that is particularly challenging for zero-respecting
algorithms, which depends on parameters 7' € N, 4 < 1l and r > 1:

T

: VB e AN e |
frpr(@) = oo =12+ 53 (i — 2 + 0 ) Vo), @)
i=1

i=1

where the function Y, is )
TRt —1)
T, (x) = 120/ ——— 2 dt.
V=120 | e

We illustrate our construction (2) in Figure P11.1 in [8]; it is a sum of a quadratic chain, proposed by Nesterov
[18] for lower bounds in convex optimization, and a separable non-convex function carefully chosen to
make the gradient of fr , . larger. We now establish the three components of our lower bound strategy (see
Lemmas P11.3-P11.4).

Lemma 2. Forany T € N, p € [0,1] and v > 1, the function fT, u,r Satisfies the following.

i. Zero-chain fr is a first-order zero-chain.

ii. Membership in function class fr.,.» € F, (3/1i + 10uT, (1p=1y + r3"Pp)l,) for any p > 1, where
£, < el-bplogptep for some numerical constant ¢ < o0.

VJFT,;M' () || > “3/4/4'

The scaling argument used to establish lower bounds for arbitrary €, A, Ly, ..., L, > 0 is similar to the one
we sketch for Theorem 1, but is more involved as we must choose additional parameters (1 and 7) and satisfy
multiple Lipschitz constraints; see Section P11.5.2. We conclude with our final lower bound.

iii. Large gradient For every x € RT*! such that v = x7,1 = 0,

3
Theorem 2. There exists a numerical constant ¢ < oo and ¢, < e’7 1o89%¢q gych that the following lower

bound holds. Letp > 2, p € N, and let A, Ly, Lo, ..., Ly, € be positive. Assume additionally that € <
(LY/L)Y @Y for each q € {2,...,p}. Then

3q—5 2
. Ly 5(q—1) Ly 5(¢g—1) -8/5
A m1n2<q<p{(€ ) (EQ) }6 pz3
Te(Afe UAL Frp(A, Ly, L) 2 =
() (%) e p=2

4
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