
A Generic Approach for Escaping Saddle points

Anonymous Author(s)
Affiliation
Address
email

Abstract

A central challenge to using first-order methods for optimizing nonconvex problems is1

the presence of saddle points. First-order methods often get stuck at saddle points, greatly2

deteriorating their performance. Typically, to escape from saddles one has to use second-3

order methods. However, most works on second-order methods rely extensively on expensive4

Hessian-based computations, making them impractical in large-scale settings. To tackle this5

challenge, we introduce a generic framework that minimizes Hessian based computations6

while at the same time provably converging to second-order critical points. Our framework7

carefully alternates between a first-order and a second-order subroutine, using the latter only8

close to saddle points, and yields convergence results competitive to the state-of-the-art.9

Empirical results suggest that our strategy also enjoys good practical performance.10

1 Introduction11

We study nonconvex finite-sum problems of the form12

min
x∈Rd

f(x) :=
1

n

n∑
i=1

fi(x), (1)

where f : Rd → R nor the individual functions fi : Rd → R (i ∈ [n]) are necessarily convex. Optimization13

problems of this form arise naturally in machine learning e.g. empirical risk minimization.14

In the large-scale settings, algorithms based on first-order information of functions fi are typically favored15

as they are relatively inexpensive and scale seamlessly. An algorithm widely used in practice is stochastic16

gradient descent (SGD) which under suitable selection of the learning rate converges to a point x that, in17

expectation, satisfies the stationarity condition ‖∇f(x)‖ ≤ ε in O(1/ε4) iterations [9]. This result neither18

ensures convergence to second-order critical points nor the rate is fast. For general nonconvex problems, one19

has to settle for a more modest goal than sub-optimality, as finding the global minimizer is intractably hard.20

Unfortunately, SGD does not even ensure second-order critical conditions as it can get stuck at saddle points.21

To overcome these issues, the cubic regularization (CR) method [23] explicitly uses Hessians to obtain faster22

convergence rates. In particular, Nesterov and Polyak [23] showed that CR requires O(1/ε3/2) iterations23

to achieve the second-order critical conditions. However, each iteration of CR is expensive as it requires24

computing the Hessian and solving multiple linear systems, each of which has complexity O(dω) (ω is the25

matrix multiplication constant), thus, undermining the benefit of its faster convergence. Recently, Agarwal26

et al. [2] designed an algorithm to solve the CR more efficiently, however, it still exhibits slower convergence27

in practice compared to first-order methods. Both of these approaches use Hessian based optimization in each28

iteration, which make them slow in practice.29

A second line of work focuses on using Hessian information (or its structure) whenever the method gets stuck30

at stationary points that are not second-order critical. To our knowledge, the first work in this line is [8], which31

shows that for a class of functions that satisfy a special property called “strict-saddle” property, a noisy variant32

of SGD can converge to a point close to a local minimum. For this class of functions, points close to saddle33

points have a Hessian with a large negative eigenvalue, which proves instrumental in escaping saddle points34

using an isotropic noise. While such a noise-based method is appealing as it only uses first-order information,35

it has a very bad dependence on the dimension d, and furthermore, the result only holds when the strict-saddle36

property is satisfied [8].37

Inspired by this line of work, we develop a general framework for finding second-order critical points. The38

key idea is to use first-order information for the most part of the optimization process and invoke Hessian39

information only when stuck at stationary points that are not second-order critical.40

Figure 1: First order methods like GD can po-
tentially get stuck at saddle points. Second-order
methods can escape it in very few iterations (as
observed in the left plot) but at the cost of expen-
sive Hessian based iterations (see time plot to the
right). The proposed framework, which is a novel
mix of the two strategies, can escape saddle points
faster in time by carefully trading off computation
and iteration complexity.

2 Background & Problem Setup41

We assume that each of the functions fi in (1) is L-smooth, i.e., ‖∇fi(x)−∇fi(y)‖ ≤ L‖x−y‖ for all i ∈ [n].42

Furthermore, we assume that the Hessian of f in (1) is M-Lipschitz, i.e., ‖∇2f(x)−∇2f(y)‖ ≤M‖x− y‖43

for all x, y ∈ Rd. We also assume that the function f is bounded below, i.e., f(x) ≥ B for all x ∈ Rd.44

In order to measure stationarity of an iterate x, similar to [9, 22, 23], we use the condition ‖∇f(x)‖ ≤ ε. In45

this paper, we are interested in convergence to second-order critical points. Thus, in addition to stationarity, we46

also require the solution to satisfy the Hessian condition∇2f(x) � −γI [23].47

Definition 1. An algorithm A is said to obtain a point x that is a (ε, γ)-second order critical point if48

E[‖∇f(x)‖] ≤ ε and E[∇2f(x)] � −γI, where the expectation is over any randomness in A.49

For our algorithms, we use only cheap Incremental First-order Oracle (IFO) [1] and an Incremental Second-50

order Oracle (ISO), which have time complexity O(d) in many practical settings.51

Definition 2. An IFO takes an index i ∈ [n] and a point x ∈ Rd, and returns the pair (fi(x),∇fi(x)). An52

ISO takes an index i ∈ [n], point x ∈ Rd and vector v ∈ Rd and returns the vector∇2fi(x)v.53

For clarity and clean comparison, the dependence of time complexity on Lipschitz constant L, M , initial point54

and any polylog factors in the results is hidden.55

3 Generic Framework56

We propose a generic framework for escaping saddle points while solving nonconvex problems of form (1). To57

evade saddle points, one needs to use properties of both gradients and Hessians. To this end, our framework is58

based on two core subroutines: GRADIENT-FOCUSED-OPTIMIZER and HESSIAN-FOCUSED-OPTIMIZER.59

The idea is to use these two subroutines, each focused on different aspects of the optimization procedure.60

GRADIENT-FOCUSED-OPTIMIZER focuses on using gradient information for decreasing the function. On its61

own, the GRADIENT-FOCUSED-OPTIMIZER might not converge to a second order critical point since it can62

get stuck at a saddle point. Hence, we require the subroutine HESSIAN-FOCUSED-OPTIMIZER to help avoid63

saddle points. We design a procedure that interleave these subroutines to obtain a second-order critical point,64

which not only provides meaningful theoretical guarantees, but also translates into strong empirical gains.65

Algorithm 1 provides pseudocode of our framework. Observe that the algorithm is still abstract, and we assume66

the following properties to hold for these subroutines.67

• GRADIENT-FOCUSED-OPTIMIZER: Suppose (y, z) = GRADIENT-FOCUSED-OPTIMIZER(x, n, ε), then68

there exists positive function g : N× R+ → R+, such that69

G.1 E[f(y)] ≤ f(x),70

G.2 E[‖∇f(y)‖2] ≤ 1
g(n,ε)E[f(x)− f(z)].71

Here the outputs y, z ∈ Rd. The expectation in the conditions above is over any randomness that is72

a part of the subroutine. The function g will be critical for the overall rate of Algorithm 1. Typically,73

GRADIENT-FOCUSED-OPTIMIZER is a first-order method, since the primary aim of this subroutine is to74

focus on gradient based optimization.75

• HESSIAN-FOCUSED-OPTIMIZER: Suppose (y, τ) = HESSIAN-FOCUSED-OPTIMIZER(x, n, ε, γ) where76

y ∈ Rd and τ ∈ {∅, �}. If τ = ∅, then y is a (ε, γ)-second order critical point with probability at least77

1− q. Otherwise if τ = �, then y satisfies the following condition:78

H.1 E[f(y)] ≤ f(x),79

H.2 E[f(y)] ≤ f(x)− h(n, ε, γ) when λmin(∇2f(x)) ≤ −γ for some h : N× R+ × R+ → R+.80

Here the expectation is over any randomness in subroutine. The two conditions ensure that the objective81

function value, in expectation, never increases and decreases with a certain rate when λmin(∇2f(x)) ≤ −γ.82

In general, this subroutine utilizes the Hessian or its properties for minimizing the objective function.83

Typically, this is the most expensive part of the Algorithm 1 and hence, needs to be invoked judiciously.84

2

Algorithm 1 Generic Framework

1: Input - Initial point: x0, total iterations T , error threshold parameters ε, γ and probability p
2: for t = 1 to T do
3: (yt, zt) = GRADIENT-FOCUSED-OPTIMIZER(xt−1, ε) (refer to G.1 and G.2)
4: Choose ut as yt with probability p and zt with probability 1− p
5: (xt+1, τ t+1) = HESSIAN-FOCUSED-OPTIMIZER(ut, ε, γ) (refer to H.1 and H.2)
6: if τ t+1 = ∅ then
7: Output set {xt+1}
8: end if
9: end for

10: Output set {y1, ..., yT }

3.1 Convergence Analysis85

The key aspect of these subroutines is that they, in expectation, never increase the objective function value.86

The functions g and h will determine the convergence rate of Algorithm 1.87

Theorem 1. Let ∆ = f(x0) − B and θ = min((1 − p)ε2g(n, ε), ph(n, ε, γ)) . Also, let set88

Γ be the output of Algorithm 1 with GRADIENT-FOCUSED-OPTIMIZER satisfying G.1 and G.2 and89

HESSIAN-FOCUSED-OPTIMIZER satisfying H.1 and H.2. Furthermore, T be such that T > ∆/θ. Sup-90

pose the multiset S = {i1, ...ik} are k indices selected independently and uniformly randomly from {1, ...,91

|Γ|}. Then the following holds for the indices in S:92

1. yt, where t ∈ {i1, ..., ik}, is a (ε, γ)-critical point with probability at least 1−max(∆/(Tθ), q).93

2. If k = O(log(1/ζ)/min(log(∆/(Tθ)), log(1/q))), with at least probability 1− ζ, at least one iterate yt94

where t ∈ {i1, ..., ik} is a (ε, γ)-critical point.95

The proof of the result is presented in Appendix B. The key point regarding the above result is that the overall96

convergence rate depends on the magnitude of both functions g and h. Theorem 1 shows that the slowest97

amongst the subroutines GRADIENT-FOCUSED-OPTIMIZER and HESSIAN-FOCUSED-OPTIMIZER governs98

the overall rate of Algorithm 1. Thus, it is important to ensure that both these procedures have good convergence.99

Also, note that the optimal setting for p based on the result above satisfies 1/p = 1/ε2g(n, ε) + 1/h(n, ε, γ) .100

3.2 An Example Instantiation101

We now present a specific instantiation of our framework and derive the time complexity required to reach102

a second order critical point. For this example we use SVRG as the GRADIENT-FOCUSED-OPTIMIZER and103

HESSIANDESCENT as the HESSIAN-FOCUSED-OPTIMIZER.104

• SVRG [12, 26] is a stochastic algorithm recently shown to be very effective for reducing variance in105

finite-sum problems. Strong convergence rates have been proved for SVRG in the context of convex and106

nonconvex optimization [12, 26]. The following result shows that SVRG meets the requirements of a107

GRADIENT-FOCUSED-OPTIMIZER.108

Lemma 1. SVRG with ηt = η = 1/4Ln2/3, m = n and Tg = Tε, which depends on ε, is a109

GRADIENT-FOCUSED-OPTIMIZER with g(n, ε) = Tε/40Ln2/3.110

The algorithm for SVRG and the proof of the result is presented in Appendix C.111

• HESSIANDESCENT is a direct approach using the eigenvector corresponding to the smallest eigenvalue112

of the hessian to make a descent step. More specifically, when the smallest eigenvalue of the Hessian is113

negative and reasonably large in magnitude, i.e. λmin(∇2f(x)) ≤ −γ then the Hessian information can be114

used to ensure descent in the objective function value. Note the subroutine is designed in a fashion such that115

the objective function value never increases. The following result shows that HESSIANDESCENT meets the116

requirements of a HESSIAN-FOCUSED-OPTIMIZER.117

Lemma 2. HESSIANDESCENT is a HESSIAN-FOCUSED-OPTIMIZER with h(n, ε, γ) = ρ
24M2 γ

3.118

The algorithm for HESSIANDESCENT and proof of the result is presented in Appendix D.119

Now we can show the following key result:120

Theorem 2. Suppose SVRG with m = n, ηt = η = 1/4Ln2/3 for all t ∈ {1, ...,m} and121

Tg = 40Ln2/3/ε1/2 is used as GRADIENT-FOCUSED-OPTIMIZER and HESSIANDESCENT is used as122

HESSIAN-FOCUSED-OPTIMIZER with q = 0, then Algorithm 1 finds a (ε,
√
ε)-second order critical point in123

T = O(∆/min(p, 1− p)ε3/2) with probability at least 0.9.124

3

Figure 2: Comparison of various methods on CURVES and MNIST Deep Autoencoder. Our mix approach
converges faster than the baseline methods and uses relatively few ISO calls, which are practically relatively
expensive to IFO calls, in comparison to APPROXCUBICDESCENT.

The result directly follows from using Lemma 1 and 2 in Theorem 1. Combining this with the time125

complexity of SVRG which is O(nd + Tgd) = O(nd + n2/3d/ε1/2) and HESSIANDESCENT which is126

(O(nd+ n3/4d/ε1/4)), we get the following result.127

Corollary 1. The overall running time of Algorithm 1 to find a (ε,
√
ε)-second order critical point, with128

parameter settings used in Theorem 2, is O(nd/ε3/2 + n3/4d/ε7/4 + n2/3d/ε2).129

Note that the dependence on ε is much better in comparison to that of Noisy SGD used in [8]. Furthermore, our130

results are competitive with [2, 4] in their respective settings, but with a much simpler algorithm and analysis.131

We also note that our algorithm is faster than [11], which has a time complexity of O(nd/ε2).132

3.3 Practical Considerations133

To further achieve good empirical performance, we had to slightly modify these procedures. For134

HESSIAN-FOCUSED-OPTIMIZER, we found stochastic, adaptive and inexact approaches for solving135

HESSIANDESCENT and CUBICDESCENT work well in practice. Due to lack of space, the exact description of136

these modifications is deferred to Appendix F. Furthermore, in the context of deep learning, empirical evidence137

suggests that first-order methods like ADAM [13] exhibit behavior that is in congruence with properties G.1138

and G.2. While theoretical analysis for a setting where ADAM is used as GRADIENT-FOCUSED-OPTIMIZER139

is still unresolved, we nevertheless demonstrate its performance through empirical results.140

4 Experiments141

To investigate the practical performance of the framework, we applied it to two deep autoencoder optimization142

problems from [10] called “CURVES” and “MNIST”. Due to their high difficulty, performance on these143

problems has become a standard benchmark for neural network optimization methods, e.g. [20, 21, 32, 33].144

The “CURVES” autoencoder consists of an encoder with layers of size (28x28)-400-200-100- 50-25-6 and a145

symmetric decoder totaling in 0.85M parameters. The six units in the code layer were linear and all the other146

units were logistic. The network was trained on 20,000 images and tested on 10,000 new images. The data set147

contains images of curves that were generated from three randomly chosen points in two dimensions. The148

“MNIST” autoencoder consists of an encoder with layers of size (28x28)-1000-500-250-30 and a symmetric149

decoder, totaling in 2.8M parameters. The thirty units in the code layer were linear and all the other units were150

logistic. The network was trained on 60,000 images and tested on 10,000 new images. The data set contains151

images of handwritten digits 0-9. The pixel intensities were normalized to lie between 0 and 1.1152

As an instantiation of our framework, we use a mix of ADAM, which is popular in deep learning community, and153

an APPROXCUBICDESCENT for the practical reasons mentioned in Section 3.3. This method with ADAM and154

APPROXCUBICDESCENT. The parameters of these algorithms were chosen to produce the best generalization155

on a held out test set. The regularization parameter M was chosen as the smallest value such that the function156

value does not fluctuate in the first 10 epochs. We use the initialization suggested in [20] and a mini-batch size157

of 1000 for all the algorithms. We report objective function value against wall clock time and ISO calls.158

The results are presented in Figure 2, which shows that our proposed mix framework was the fastest to escape159

the saddle point in terms of wall clock time. ADAM took considerably more time to escape the saddle point,160

especially in the case of MNIST. While APPROXCUBICDESCENT escaped the saddle point in relatively fewer161

iterations, each iteration required considerably large number of ISO calls; as a result, the method was extremely162

slow in terms of wall clock time, despite our efforts to improve it via approximations and code optimizations.163

On the other hand, our proposed framework, seamlessly balances these two methods, thereby, resulting in the164

fast decrease of training loss.165

1Data available at: www.cs.toronto.edu/~jmartens/digs3pts_1.mat, mnist_all.mat

4

www.cs.toronto.edu/~jmartens/digs3pts_1.mat
www.cs.toronto.edu/~jmartens/mnist_all.mat

References166

[1] Alekh Agarwal and Leon Bottou. A lower bound for the optimization of finite sums. arXiv:1410.0723,167

2014.168

[2] Naman Agarwal, Zeyuan Allen Zhu, Brian Bullins, Elad Hazan, and Tengyu Ma. Finding approximate169

local minima for nonconvex optimization in linear time. CoRR, abs/1611.01146, 2016.170

[3] Léon Bottou. Stochastic gradient learning in neural networks. Proceedings of Neuro-Nımes, 91(8), 1991.171

[4] Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford. Accelerated methods for non-convex172

optimization. CoRR, abs/1611.00756, 2016.173

[5] C. Cartis and K. Scheinberg. Global convergence rate analysis of unconstrained optimization methods174

based on probabilistic models. Mathematical Programming, pages 1–39, 2017. ISSN 1436-4646. doi:175

10.1007/s10107-017-1137-4.176

[6] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A fast incremental gradient method177

with support for non-strongly convex composite objectives. In NIPS 27, pages 1646–1654, 2014.178

[7] Aaron J Defazio, Tibério S Caetano, and Justin Domke. Finito: A faster, permutable incremental gradient179

method for big data problems. arXiv:1407.2710, 2014.180

[8] Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points - online stochastic181

gradient for tensor decomposition. In Proceedings of The 28th Conference on Learning Theory, COLT182

2015, pages 797–842, 2015.183

[9] Saeed Ghadimi and Guanghui Lan. Stochastic first- and zeroth-order methods for nonconvex stochastic184

programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013. doi: 10.1137/120880811.185

[10] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural186

networks. science, 313(5786):504–507, 2006.187

[11] Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M. Kakade, and Michael I. Jordan. How to escape saddle188

points efficiently. CoRR, abs/1703.00887, 2017.189

[12] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance reduction.190

In NIPS 26, pages 315–323, 2013.191

[13] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980,192

2014.193

[14] Jakub Konečný, Jie Liu, Peter Richtárik, and Martin Takáč. Mini-Batch Semi-Stochastic Gradient194

Descent in the Proximal Setting. arXiv:1504.04407, 2015.195

[15] Harold Joseph Kushner and Dean S Clark. Stochastic approximation methods for constrained and196

unconstrained systems, volume 26. Springer Science & Business Media, 2012.197

[16] Guanghui Lan and Yi Zhou. An optimal randomized incremental gradient method. arXiv:1507.02000,198

2015.199

[17] Kfir Y. Levy. The power of normalization: Faster evasion of saddle points. CoRR, abs/1611.04831, 2016.200

[18] Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. Asynchronous Parallel Stochastic Gradient for201

Nonconvex Optimization. In NIPS, 2015.202

[19] Lennart Ljung. Analysis of recursive stochastic algorithms. Automatic Control, IEEE Transactions on,203

22(4):551–575, 1977.204

[20] James Martens. Deep learning via hessian-free optimization. In Proceedings of the 27th International205

Conference on Machine Learning (ICML-10), pages 735–742, 2010.206

[21] James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate207

curvature. In International Conference on Machine Learning, pages 2408–2417, 2015.208

[22] Yurii Nesterov. Introductory Lectures On Convex Optimization: A Basic Course. Springer, 2003.209

[23] Yurii Nesterov and Boris T Polyak. Cubic regularization of newton method and its global performance.210

Mathematical Programming, 108(1):177–205, 2006.211

5

[24] BT Poljak and Ya Z Tsypkin. Pseudogradient adaptation and training algorithms. Automation and212

Remote Control, 34:45–67, 1973.213

[25] Sashank Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alex J Smola. On variance reduction in214

stochastic gradient descent and its asynchronous variants. In NIPS 28, pages 2629–2637, 2015.215

[26] Sashank J. Reddi, Ahmed Hefny, Suvrit Sra, Barnabás Póczos, and Alexander J. Smola. Stochastic216

variance reduction for nonconvex optimization. In Proceedings of the 33nd International Conference on217

Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, pages 314–323, 2016.218

[27] Sashank J. Reddi, Suvrit Sra, Barnabás Póczos, and Alexander J. Smola. Fast incremental method for219

nonconvex optimization. CoRR, abs/1603.06159, 2016.220

[28] Sashank J. Reddi, Suvrit Sra, Barnabás Póczos, and Alexander J. Smola. Fast stochastic methods for221

nonsmooth nonconvex optimization. CoRR, 2016.222

[29] H. Robbins and S. Monro. A stochastic approximation method. Annals of Mathematical Statistics, 22:223

400–407, 1951.224

[30] Mark W. Schmidt, Nicolas Le Roux, and Francis R. Bach. Minimizing Finite Sums with the Stochastic225

Average Gradient. arXiv:1309.2388, 2013.226

[31] Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for regularized loss.227

The Journal of Machine Learning Research, 14(1):567–599, 2013.228

[32] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization229

and momentum in deep learning. In International conference on machine learning, pages 1139–1147,230

2013.231

[33] Oriol Vinyals and Daniel Povey. Krylov subspace descent for deep learning. In AISTATS, pages232

1261–1268, 2012.233

6

Appendix: A Generic Approach for Escaping Saddle points234

A Related Works235

There is a vast literature on algorithms for solving optimization problems of the form (1). A classical approach236

for solving such optimization problems is SGD, which dates back at least to the seminal work of [29]. Since237

then, SGD has been a subject of extensive research, especially in the convex setting [3, 15, 19, 24]. Recently,238

new faster methods, called variance reduced (VR) methods, have been proposed for convex finite-sum239

problems. VR methods attain faster convergence by reducing the variance in the stochastic updates of SGD, see240

e.g., [6, 7, 12, 14, 30, 31]. Accelerated variants of these methods achieve the lower bounds proved in [1, 16],241

thereby settling the question of their optimality. Furthermore, [25] developed an asynchronous framework for242

VR methods and demonstrated their benefits in parallel environments.243

Most of the aforementioned prior works study stochastic methods in convex or very specialized nonconvex244

settings that admit theoretical guarantees on sub-optimality. For the general nonconvex setting, it is only245

recently that non-asymptotic convergence rate analysis for SGD and its variants was obtained in [9], who246

showed that SGD ensures ‖∇f‖ ≤ ε (in expectation) in O(1/ε4) iterations. A similar rate for parallel and247

distributed SGD was shown in [18]. For these problems, Reddi et al. [26, 27, 28] proved faster convergence248

rates that ensure the same optimality criteria in O(n+n2/3/ε2), which is an order n1/3 faster than GD. While249

these methods ensure convergence to stationary points at a faster rate, the question of convergence to local250

minima (or in general to second-order critical points) has not been addressed. To our knowledge, convergence251

rates to second-order critical points (defined in Definition 1) for general nonconvex functions was first studied252

by [23]. However, each iteration of the algorithm in [23] is prohibitively expensive since it requires eigenvalue253

decompositions, and hence, is unsuitable for large-scale high-dimensional problems. More recently, Agarwal254

et al. [2], Carmon et al. [4] presented algorithms for finding second-order critical points by tackling some255

practical issues that arise in [23]. However, these algorithms are either only applicable to a restricted setting or256

heavily use Hessian based computations, making them unappealing from a practical standpoint. Noisy variants257

of first-order methods have also been shown to escape saddle points (see [8, 11, 17]), however, these methods258

have strong dependence on either n or d, both of which are undesirable.259

B Proof of Theorem 1260

The case of τ = ∅ can be handled in a straightforward manner, so let us focus on the case where τ = �. We261

split our analysis into cases, each analyzing the change in objective function value depending on second-order262

criticality of yt.263

We start with the case where the gradient condition of second-order critical point is violated and then proceed264

to the case where the Hessian condition is violated.265

Case I: E[‖∇f(yt)‖] ≥ ε for some t > 0266

We first observe the following: E[‖∇f(yt)‖2] ≥ (E‖∇f(yt)‖)2 ≥ ε2. This follows from a straightforward267

application of Jensen’s inequality. From this inequality, we have the following:268

ε2 ≤ E[‖∇f(yt)‖2] ≤ 1

g(n, ε)
E[f(xt−1)− f(zt)]. (2)

This follows from the fact that yt is the output of GRADIENT-FOCUSED-OPTIMIZER subroutine, which
satisfies the condition that for (y, z) = GRADIENT-FOCUSED-OPTIMIZER(x, n, ε), we have

E[‖∇f(y)‖2] ≤ 1

g(n, ε)
E[f(x)− f(z)].

From Equation (2), we have

E[f(zt)] ≤ E[f(xt−1)]− ε2g(n, ε).

Furthermore, due to the property of non-increasing nature of GRADIENT-FOCUSED-OPTIMIZER, we also269

have E[yt] ≤ E[f(xt−1)].270

We now focus on the HESSIAN-FOCUSED-OPTIMIZER subroutine. From the property of271

HESSIAN-FOCUSED-OPTIMIZER that the objective function value is non-increasing, we have272

7

E[f(xt)] ≤ E[f(ut)]. Therefore, combining with the above inequality, we have273

E[f(xt)] ≤ E[f(ut)]

= pE[f(yt)] + (1− p)E[f(zt)]

≤ pE[f(xt−1)] + (1− p)(E[f(xt−1)]− ε2g(n, ε))

= E[f(xt−1)]− (1− p)ε2g(n, ε). (3)

The first equality is due to the definition of ut in Algorithm 1. Therefore, when the gradient condition is274

violated, irrespective of whether λmin(∇2f(x)) ≤ −γ or∇2f(yt) � −γI, the objective function value always275

decreases by at least ε2g(n, ε).276

Case II: E[‖∇f(yt)‖] < ε and λmin(∇2f(x)) ≤ −γ for some t > 0277

In this case, we first note that for y = HESSIAN-FOCUSED-OPTIMIZER(x, n, ε, γ) and λmin(∇2f(x)) ≤ −γ,
we have E[f(y)] ≤ f(x) − h(n, ε, γ). Observe that xt = HESSIAN-FOCUSED-OPTIMIZER(ut, n, ε, γ).
Therefore, if ut = yt and λmin(∇2f(x)) ≤ −γ, then we have

E[f(xt)|ut = yt] ≤ f(yt)− h(n, ε, γ) ≤ f(xt−1)− h(n, ε, γ).

The second inequality is due to the non-increasing property of GRADIENT-FOCUSED-OPTIMIZER. On the278

other hand, if ut = zt, we have hand, if we have E[f(xt)|ut = zt] ≤ f(zt). This is due to the non-increasing279

property of HESSIAN-FOCUSED-OPTIMIZER. Combining the above two inequalities and using the law of280

total expectation, we get281

E[f(xt)] = pE[f(xt)|ut = yt] + (1− p)E[f(xt)|ut = zt]

≤ p
(
E[f(yt)]− h(n, ε, γ)

)
+ (1− p)E[f(zt)]

≤ p
(
E[f(xt−1)]− h(n, ε, γ)

)
+ (1− p)E[f(xt−1)]

= E[f(xt−1)]− ph(n, ε, γ). (4)

The second inequality is due to he non-increasing property of GRADIENT-FOCUSED-OPTIMIZER. Therefore,282

when the hessian condition is violated, the objective function value always decreases by at least ph(n, ε, γ).283

Case III: E[‖∇f(yt)‖] < ε and∇2f(yt) � −γI for some t > 0284

This is the favorable case for the algorithm. The only condition to note is that the objective function value285

will be non-increasing in this case too. This is, again, due to the non-increasing properties of subroutines286

GRADIENT-FOCUSED-OPTIMIZER and HESSIAN-FOCUSED-OPTIMIZER. In general, greater the occurrence287

of this case during the course of the algorithm, higher will the probability that the output of our algorithm288

satisfies the desired property.289

The key observation is that Case I & II cannot occur large number of times since each of these cases strictly
decreases the objective function value. In particular, from Equation (3) and (4), it is easy to see that each
occurrence of Case I & II the following holds:

E[f(xt)] ≤ E[f(xt−1)]− θ,
where θ = min((1− p)ε2g(n, ε), ph(n, ε, γ)). Furthermore, the function f is lower bounded by B, thus, Case290

I & II cannot occur more than (f(x0)−B)/θ times. Therefore, the probability of occurrence of Case III is at291

least 1− (f(x0)−B)/(Tθ), which completes the first part of the proof.292

The second part of the proof simply follows from first part. As seen above, the probability of Case I & II293

is at most (f(x0) − B)/Tθ. Therefore, probability that an element of the set S falls in Case III is at least294

1− ((f(x0)−B)/Tθ)k, which gives us the required result for the second part.295

C SVRG and Proof of Lemma 1296

SVRG [12, 26] is a stochastic algorithm recently shown to be very effective for reducing variance in finite-sum297

problems. We seek to understand its benefits for nonconvex optimization, with a particular focus on the issue298

of escaping saddle points. Algorithm 2 presents SVRG’s pseudocode.299

Observe that Algorithm 2 is an epoch-based algorithm. At the start of each epoch s, a full gradient is calculated300

at the point x̃s, requiring n calls to the IFO. Within its inner loop SVRG performs m stochastic updates.301

Suppose m is chosen to be O(n) (typically used in practice), then the total IFO calls per epoch is Θ(n). Strong302

convergence rates have been proved Algorithm 2 in the context of convex and nonconvex optimization [12, 26]303

8

Algorithm 2 SVRG
(
x0, ε

)
1: Input: x0m = x0 ∈ Rd, epoch length m, step sizes {ηi > 0}m−1

i=0 , iterations Tg , S = dTg/me
2: for s = 0 to S − 1 do
3: x̃s = xs+1

0 = xsm
4: gs+1 = 1

n

∑n
i=1∇fi(x̃

s)
5: for t = 0 to m− 1 do
6: Uniformly randomly pick it from {1, . . . , n}
7: vs+1

t = ∇fit(xs+1
t)−∇fit(x̃s) + gs+1

8: xs+1
t+1 = xs+1

t − ηtvs+1
t

9: end for
10: end for
11: Output: (y, z) where y is Iterate xa chosen uniformly random from {{xs+1

t }m−1
t=0 }

S−1
s=0 and z = xSm.

Proof of Lemma 1. The proof follows from the analysis in [26] with some additional reasoning. We need to304

show two properties: G.1 and G.2, both of which are based on objective function value. To this end, we start305

with an update in the sth epoch. We have the following:306

E[f(xs+1
t+1)] ≤ E[f(xs+1

t) + 〈∇f(xs+1
t), xs+1

t+1 − x
s+1
t 〉+ L

2 ‖x
s+1
t+1 − x

s+1
t ‖2]

≤ E[f(xs+1
t)− ηt‖∇f(xs+1

t)‖2 +
Lη2t
2 ‖v

s+1
t ‖2]. (5)

The first inequality is due to L-smoothness of the function f . The second inequality simply follows from
the unbiasedness of SVRG update in Algorithm 2. For the analysis of the algorithm, we need the following
Lyapunov function:

As+1
t := E[f(xs+1

t) + µt‖xs+1
t − x̃s‖2].

This function is a combination of objective function and the distance of the current iterate from the latest
snapshot x̃s. Note that the term µt is introduced only for the analysis and is not part of the algorithm (see
Algorithm 2). Here {µt}mt=0 is chosen such the following holds:

µt = µt+1(1 + ηtβt + 2η2tL
2) + η2tL

3,

for all t ∈ {0, · · · ,m− 1} and µm = 0. For bounding the Lypunov function A, we need the following bound307

on the distance of the current iterate from the latest snapshot:308

E[‖xs+1
t+1 − x̃s‖2] = E[‖xs+1

t+1 − x
s+1
t + xs+1

t − x̃s‖2]

= E[‖xs+1
t+1 − x

s+1
t ‖2 + ‖xs+1

t − x̃s‖2 + 2〈xs+1
t+1 − x

s+1
t , xs+1

t − x̃s〉]
= E[η2t ‖vs+1

t ‖2 + ‖xs+1
t − x̃s‖2]− 2ηtE[〈∇f(xs+1

t), xs+1
t − x̃s〉]

≤ E[η2t ‖vs+1
t ‖2 + ‖xs+1

t − x̃s‖2] + 2ηtE
[

1
2βt
‖∇f(xs+1

t)‖2 + 1
2βt‖x

s+1
t − x̃s‖2

]
. (6)

The second equality is due to the unbiasedness of the update of SVRG. The last inequality follows from a309

simple application of Cauchy-Schwarz and Young’s inequality. Substituting Equation (5) and Equation (6)310

into the Lypunov function As+1
t+1 , we obtain the following:311

As+1
t+1 ≤ E[f(xs+1

t)− ηt‖∇f(xs+1
t)‖2 +

Lη2t
2 ‖v

s+1
t ‖2]

+ E[µt+1η
2
t ‖vs+1

t ‖2 + µt+1‖xs+1
t − x̃s‖2]

+ 2µt+1ηtE
[

1
2βt
‖∇f(xs+1

t)‖2 + 1
2βt‖x

s+1
t − x̃s‖2

]
≤ E[f(xs+1

t)−
(
ηt − µt+1ηt

βt

)
‖∇f(xs+1

t)‖2

+
(
Lη2t
2 + µt+1η

2
t

)
E[‖vs+1

t ‖2] + (µt+1 + µt+1ηtβt)E
[
‖xs+1

t − x̃s‖2
]
. (7)

To further bound this quantity, we use Lemma 3 to bound E[‖vs+1
t ‖2], so that upon substituting it in Equa-312

tion (7), we see that313

As+1
t+1 ≤ E[f(xs+1

t)]−
(
ηt − µt+1ηt

βt
− η2tL− 2µt+1η

2
t

)
E[‖∇f(xs+1

t)‖2]

+
[
µt+1

(
1 + ηtβt + 2η2tL

2
)

+ η2tL
3
]
E
[
‖xs+1

t − x̃s‖2
]

≤ As+1
t −

(
ηt − µt+1ηt

βt
− η2tL− 2µt+1η

2
t

)
E[‖∇f(xs+1

t)‖2].

9

The second inequality follows from the definition of µt and As+1
t . Since ηt = η = 1/(4Ln2/3) for j > 0 and314

t ∈ {0, . . . , j − 1},315

As+1
j ≤ As+1

0 − υn
∑j−1

t=0
E[‖∇f(xs+1

t)‖2], (8)

where
υn =

(
ηt − µt+1ηt

βt
− η2tL− 2µt+1η

2
t

)
.

We will prove that for the given parameter setting υn > 0 (see the proof below). With υn > 0, it is easy to
see that As+1

j ≤ As+1
0 . Furthermore, note that As+1

0 = E[f(xs+1
0) + µ0‖xs+1

0 − x̃s‖2] = E[f(xs+1
0)] since

xs+1
0 = x̃s (see Algorithm 2). Also, we have

E[f(xs+1
j) + µj‖xs+1

j − x̃s‖2] ≤ E[f(xs+1
0)]

and thus, we obtain E[f(xs+1
j)] ≤ E[f(xs+1

0)] for all j ∈ {0,,m}. Furthermore, using simple induction316

and the fact that xs+1
0 = xsm for all epoch s ∈ {0, ..., S − 1}, it easy to see that E[f(xs+1

j)] ≤ f(x0).317

Therefore, with the definition of y specified in the output of Algorithm 2, we see that the condition G.1 of318

GRADIENT-FOCUSED-OPTIMIZER is satisfied for SVRG algorithm.319

We now prove that υn > 0 and also G.2 of GRADIENT-FOCUSED-OPTIMIZER is satisifed for SVRG algorithm.320

By using telescoping the sum with j = m in Equation (8), we obtain321 ∑m−1

t=0
E[‖∇f(xs+1

t)‖2] ≤ As+1
0 −As+1

m

υn
.

This inequality in turn implies that322 ∑m−1

t=0
E[‖∇f(xs+1

t)‖2] ≤ E[f(x̃s)− f(x̃s+1)]

υn
, (9)

where we used that As+1
m = E[f(xs+1

m)] = E[f(x̃s+1)] (since µm = 0), and that As+1
0 = E[f(x̃s)] (since323

xs+1
0 = x̃s). Now sum over all epochs to obtain324

1

Tg

S−1∑
s=0

m−1∑
t=0

E[‖∇f(xs+1
t)‖2] ≤ E[f(x0)− f(xSm)]

Tgυn
. (10)

Here we used the the fact that x̃0 = x0. To obtain a handle on υn and complete our analysis, we will require325

an upper bound on µ0. We observe that µ0 = L
16n4/3

(1+θ)m−1
θ where θ = 2η2L2 + ηβ. This is obtained using326

the relation µt = µt+1(1 + ηβ + 2η2L2) + η2L3 and the fact that µm = 0. Using the specified values of β327

and η we have328

θ = 2η2L2 + ηβ =
1

8n4/3
+

1

4n
≤ 3

4n
.

Using the above bound on θ, we get329

µ0 =
L

16n4/3
(1 + θ)m − 1

θ
=
L((1 + θ)m − 1)

2(1 + 2n1/3)

≤
L((1 + 3

4n)b4n/3c − 1)

2(1 + 2n1/3)
≤ n−1/3(L(e− 1)/4), (11)

wherein the second inequality follows upon noting that (1+ 1
l)
l is increasing for l > 0 and liml→∞(1+ 1

l)
l = e330

(here e is the Euler’s number). Now we can lower bound υn, as331

υn = min
t

(
η − µt+1η

β − η2L− 2µt+1η
2
)
≥
(
η − µ0η

β − η
2L− 2µ0η

2
)
≥ 1

40Ln2/3
.

The first inequality holds since µt decreases with t. The second inequality holds since (a) µ0/β can be upper332

bounded by (e − 1)/4 (follows from Equation (11)), (b) η2L ≤ η/4 and (c) 2µ0η
2 ≤ (e − 1)η/8 (follows333

from Equation (11)). Substituting the above lower bound in Equation (10), we obtain the following:334

1

Tg

S−1∑
s=0

m−1∑
t=0

E[‖∇f(xs+1
t)‖2] ≤ 40Ln2/3E[f(x0)− f(xSm)]

Tg
. (12)

From the definition of (y, z) in output of Algorithm 2 i.e., y is Iterate xa chosen uniformly random335

from {{xs+1
t }m−1t=0 }

S−1
s=0 and z = xSm, it is clear that Algorithm 2 satisfies the G.2 requirement of336

GRADIENT-FOCUSED-OPTIMIZER with g(n, ε) = Tε/40Ln2/3. Since both G.1 and G.2 are satisified337

for Algorithm 2, we conclude that SVRG is a GRADIENT-FOCUSED-OPTIMIZER.338

10

Algorithm 3 HESSIANDESCENT (x, ε, γ)

1: Find v such that ‖v‖ = 1, and with probability at least ρ the following inequality holds: 〈v,∇2f(x)v〉 ≤
λmin(∇2f(x)) + γ

2
.

2: Set α = |〈v,∇2f(x)v〉|/M .
3: u = x− α sign(〈v,∇f(x)〉)v.
4: y = argminz∈{u,x} f(z)
5: Output: (y, �).

D Hessian Descent and Proof of Lemma 2339

The approach is based on directly using the eigenvector corresponding to the smallest eigenvalue as a340

HESSIAN-FOCUSED-OPTIMIZER. More specifically, when the smallest eigenvalue of the Hessian is negative341

and reasonably large in magnitude, the Hessian information can be used to ensure descent in the objective342

function value. The pseudo-code for the algorithm is given in Algorithm 3.343

The key idea is to utilize the minimum eigenvalue information in order to make a descent step. If344

λmin(∇2f(x)) ≤ −γ then the idea is to use this information to take a descent step. Note the subroutine is345

designed in a fashion such that the objective function value never increases. Thus, it naturally satisfies the346

requirement H.1 of HESSIAN-FOCUSED-OPTIMIZER.347

Preposition 1. The time complexity of finding v ∈ Rd that ‖v‖ = 1, and with probability at least ρ the348

following inequality holds: 〈v,∇2f(x)v〉 ≤ λmin(∇2f(x)) + γ
2 is O(nd+ n3/4d/γ1/2).349

Note that each iteration of Algorithm 1 in this case has just linear dependence on d. Since the total num-350

ber of HESSIANDESCENT iterations is O(∆/min(p, 1 − p)ε3/2) and each iteration has the complexity of351

O(nd+ n3/4d/ε1/4), using the above remark, we obtain an overall time complexity of HESSIANDESCENT is352

O(nd/ε3/2 + n3/4d/ε7/4).353

Proof of Lemma 2. The first important observation is that the function value never increases because y =
arg minz∈{u,x} f(z) i.e., f(y) ≤ f(x), thus satisfying H.1 of HESSIAN-FOCUSED-OPTIMIZER. We now
analyze the scenario where λmin(∇2f(x)) ≤ −γ. Consider the event where we obtain v such that

〈v,∇2f(x)v〉 ≤ λmin(∇2f(x)) +
γ

2
.

This event (denoted by E) happens with at least probability ρ. Note that, since λmin(∇2f(x)) ≤ −γ, we have354

〈v,∇2f(x)v〉 ≤ −γ2 . In this case, we have the following relationship:355

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
1

2
(y − x)T∇2f(x)(y − x) +

M

6
‖y − x‖3

= f(x)− α|〈∇f(x), v〉|+ α2

2
vT∇2f(x)v +

Mα3

6
‖v‖3

≤ f(x) +
α2

2
vT∇2f(x)v +

Mα3

6

≤ f(x)− 1

2M2
|vT∇2f(x)v|3 +

1

6M2
|vT∇2f(x)v|3

= f(x)− 1

3M2
|vT∇2f(x)v|3 ≤ f(x)− 1

24M2
γ3. (13)

The first inequality follows from the M -lipschitz continuity of the Hessain∇2f(x). The first equality follows
from the update rule of HESSIANDESCENT. The second inequality is obtained by dropping the negative term
and using the fact that ‖v‖ = 1 . The second equality is obtained by substituting α = |vT∇2f(x)v|

M . The last
inequality is due to the fact that〈v,∇2f(x)v〉 ≤ −γ2 . In the other scenario where

〈v,∇2f(x)v〉 ≤ λmin(∇2f(x)) +
γ

2
,

we can at least ensure that f(y) ≤ f(x) since y = arg minz∈{u,x} f(z). Therefore, we have356

E[f(y)] = ρE[f(y)|E] + (1− ρ)E[f(y)|Ē]

≤ ρE[f(y)|E] + (1− ρ)f(x)

≤ ρ
[
f(x)− ρ

24M2 γ
3
]

+ (1− ρ)f(x)

= f(x)− ρ
24M2 γ

3. (14)

11

The last inequality is due to Equation (13). Hence, HESSIAN-FOCUSED-OPTIMIZER satisfies H.2 of357

HESSIAN-FOCUSED-OPTIMIZER with h(n, ε, γ) = ρ
24M2 γ

3, thus concluding the proof.358

E Other Lemmas359

The following bound on the variance of SVRG is useful for our proof [26].360

Lemma 3. [26] Let vs+1
t be computed by Algorithm 2. Then,361

E[‖vs+1
t ‖2] ≤ 2E[‖∇f(xs+1

t)‖2] + 2L2E[‖xs+1
t − x̃s‖2].

Proof. We use the definition of vs+1
t to get362

E[‖vs+1
t ‖2] = E[‖

(
∇fit(xs+1

t)−∇fit(x̃s)
)

+∇f(x̃s)‖2]

= E[‖
(
∇fit(xs+1

t)−∇fit(x̃s)
)

+∇f(x̃s)−∇f(xs+1
t) +∇f(xs+1

t)‖2]

≤ 2E[‖∇f(xs+1
t)‖2] + 2E

[∥∥∇fit(xs+1
t)−∇fit(x̃s)− E[∇fit(xs+1

t)−∇fit(x̃s)]
∥∥2]

The inequality follows from the simple fact that (a+ b)2 ≤ a2 + b2. From the above inequality, we get the363

following:364

E[‖vs+1
t ‖2] ≤ 2E[‖∇f(xs+1

t)‖2] + 2E‖∇fit(xs+1
t)−∇fit(x̃s)‖2

≤ 2E[‖∇f(xs+1
t)‖2] + 2L2E[‖xs+1

t − x̃s‖2]

The first inequality follows by noting that for a random variable ζ, E[‖ζ − E[ζ]‖2] ≤ E[‖ζ‖2]. The last365

inequality follows from L-smoothness of fit .366

F Cubic Regularization and its Approximation367

In this section, we show that the cubic regularization method in [23] can be used as368

HESSIAN-FOCUSED-OPTIMIZER. More specifically, here HESSIAN-FOCUSED-OPTIMIZER approximately369

solves the following optimization problem:370

y = arg min
z
〈∇f(x), z − x〉+

1

2

〈
z − x,∇2f(x)(z − x)

〉
+
M

6
‖z − x‖3, (CUBICDESCENT)

and returns (y, �) as output. The following result can be proved for this approach.371

Theorem 3. Suppose SVRG (same as Theorem 2) is used as GRADIENT-FOCUSED-OPTIMIZER and372

CUBICDESCENT is used as HESSIAN-FOCUSED-OPTIMIZER with q = 0, then Algorithm 1 finds a (ε,
√
ε)-373

second order critical point in T = O(∆/min(p, 1− p)ε3/2) with probability at least 0.9.374

Proof. First note that cubic method is a descent method (refer to Theorem 1 of [23]); thus, H.1 is trivially375

satisfied. Furthermore, cubic descent is a HESSIAN-FOCUSED-OPTIMIZER with h(n, ε, γ) = 2γ3

81M3 γ
3. This,376

again, follows from Theorem 1 of [23]. The result easily follows from the aforementioned observations.377

In principle, Algorithm 1 with CUBICDESCENT as HESSIAN-FOCUSED-OPTIMIZER can converge without the378

use of GRADIENT-FOCUSED-OPTIMIZER subroutine at each iteration since it essentially reduces to the cubic379

regularization method of [23]. However, in practice, we would expect GRADIENT-FOCUSED-OPTIMIZER to380

perform most of the optimization and HESSIAN-FOCUSED-OPTIMIZER to be used for far fewer iterations.381

Using the method developed in [23] for solving CUBICDESCENT, we obtain the following corollary.382

Corollary 2. The overall running time of Algorithm 1 to find a (ε,
√
ε)-second order critical point, with383

parameter settings used in Theorem 3, is O(ndω/ε3/2 + n2/3d/ε2).384

Here ω is the matrix multiplication constant. The dependence on ε is weaker in comparison to Corollary 1.385

However, each iteration of CUBICDESCENT is expensive (as seen from the factor dω in the corollary above)386

and thus, in high dimensional settings typically encountered in machine learning, this approach can be387

expensive in comparison to HESSIANDESCENT.388

Cubic regularization method of Nesterov and Polyak [23] is designed to operate on full batch, i.e., it does not389

exploit the finite-sum structure of the problem and requires the computation of the gradient and the Hessian390

on the entire dataset to make an update. However, such full-batch methods do not scale gracefully with the391

size of data and become prohibitively expensive on large datasets. To overcome this challenge, we devised an392

approximate cubic regularization method described below:393

12

Figure 3: Comparison of various methods on a synthetic problem. Our mix framework successfully escapes
saddle point and uses relatively few ISO calls in comparison to CUBICDESCENT.

1. Pick a mini-batch B and obtain the gradient and the hessian based on B, i.e.,394

g =
1

|B|
∑
i∈B
∇fi(x) H =

1

|B|
∑
i∈B
∇2fi(x) (15)

2. Solve the sub-problem395

v∗ = arg min
v
〈g, v〉+

1

2
〈v,Hv〉+

M

6
‖v‖3 (16)

3. Update: x← x+ v∗396

We found that this mini-batch training strategy, which requires the computation of the gradient and the Hessian397

on a small subset of the dataset, to work well on a few datasets (CURVES, MNIST, CIFAR10). A similar398

method has been analysed in [5].399

Furthermore, in many deep-networks, adaptive per-parameter learning rate helps immensely [13]. One possible400

explanation for this is that the scale of the gradients in each layer of the network often differ by several401

orders of magnitude. A well-suited optimization method should take this into account. This is the reason for402

popularity of methods like ADAM or RMSPROP in the deep learning community. On similar lines, to account403

for different per-parameter behaviour in cubic regularization, we modify the sub-problem by adding a diagonal404

matrix Md in addition to the scalar regularization coefficient M , i.e.,405

min
v
〈g, v〉+

1

2
〈v,Hv〉+

1

6
M‖Mdv‖3. (17)

Also we devised an adaptive rule to obtain the diagonal matrix as Md = diag((s + 10−12)1/9), where s is406

maintained as a moving average of third order polynomial of the mini-batch gradient g, in a fashion similar to407

RMSPROP and ADAM:408

s← βs+ (1− β)(|g|3 + 2g2), (18)

where |g|3 and g2 are vectors such that [|g|3]i = |gi|3 and [g2]i = g2i respectively for all i ∈ [n]. The409

experiments reported on CURVES and MNIST in this paper utilizes both the above modifications to the cubic410

regularization, with β set to 0.9. We refer to this modified procedure as ACubic in our results.411

G Experiment Details412

In this section we provide further experimental details and results to aid reproducibility.413

Synthetic Problem To demonstrate the fast escape from a saddle point by the proposed method, we consider414

the following simple nonconvex finite-sum problem:415

min
x∈Rd

1

n

n∑
i=1

xTAix+ bTi x+ ‖x‖1010 (19)

Here the parameters are designed such that
∑
i bi = 0 and

∑
iAi matrix has exactly one negative eigenvalue416

of −0.001 and other eigenvalues randomly chosen in the interval [1, 2]. The total number of examples n is set417

to be 100,000 and d is 1000. It is not hard to see that this problem has a non-degenerate saddle point at the418

origin. This allows us to explore the behaviour of different optimization algorithms in the vicinity of the saddle419

point. In this experiment, we compare a mix of SVRG and HESSIANDESCENT (as in Theorem 2) with SGD420

(with constant step size), ADAM, SVRG and CUBICDESCENT. The parameter of these algorithms is chosen421

by grid search so that it gives the best performance. The subproblem of CUBICDESCENT was solved with422

gradient descent [4] until the gradient norm of the subproblem is reduced below 10−3. We study the progress423

13

Figure 4: Comparison of various methods on a synthetic problem. Our mix framework successfully escapes
saddle point.
of optimization, i.e., decrease in function value with wall clock time, IFO calls, and ISO calls. All algorithms424

were initialized with the same starting point very close to origin.425

The results are presented in Figure 3, which shows that our proposed mix framework was the fastest to escape426

the saddle point in terms of wall clock time. We observe that performance of the first order methods suffered427

severely due to the saddle point. Note that SGD eventually escaped the saddle point due to inherent noise in428

the mini-batch gradient. CUBICDESCENT, a second-order method, escaped the saddle point faster in terms of429

iterations using the Hessian information. But operating on Hessian information is expensive as a result this430

method was slow in terms of wall clock time. The proposed framework, which is a mix of the two strategies,431

inherits the best of both worlds by using cheap gradient information most of the time and reducing the use of432

relatively expensive Hessian information (ISO calls) by 100x. This resulted in faster escape from saddle point433

in terms of wall clock time.434

G.1 Synthetic Problem435

The parameter selection for all the methods were carried as follows:436

1. SGD: The scalar step-size was determined by a grid search.437

2. ADAM: We performed a grid search over α and ε parameters of ADAM tied together, i.e., α = ε.438

3. SVRG: The scalar step-size was determined by a grid search.439

4. CUBICDESCENT: The regularization parameter M was chosen by grid search. The sub-problem was solved440

with gradient descent [4] with the step-size of solver to be 10−2 and run till the gradient norm of the441

sub-problem is reduced below 10−3.442

Further Observations The results are presented in Figure 4. The other first order methods like ADAM with443

higher noise could escape relatively faster whereas SVRG with reduced noise stayed stuck at the saddle point.444

G.2 Deep Networks445

Methods The parameter selection for all the methods were carried as follows::446

1. ADAM: We performed a grid search over α and ε parameters of ADAM so as to produce the best generaliza-447

tion on a held out test set. We found it to be α = 10−3, ε = 10−3 for CURVES and α = 10−2, ε = 10−1448

for MNIST.449

2. APPROXCUBICDESCENT: The regularization parameter M was chosen as the largest value such function450

value does not jump in first 10 epochs. We found it to be M = 103 for both CURVES and MNIST. The451

sub-problem was solved with gradient descent [4] with the step-size of solver to be 10−3 and run till the452

gradient norm of the sub-problem is reduced below 0.1.453

H Discussion454

In this paper, we examined a generic strategy to escape saddle points in nonconvex finite-sum problems and455

presented its convergence analysis. The key intuition is to alternate between a first-order and second-order456

based optimizers; the latter is mainly intended to escape points that are only stationary but are not second-457

order critical points. We presented two different instantiations of our framework and provided their detailed458

convergence analysis. While both our methods explicity use the Hessian information, one can also use noisy459

first-order methods as HESSIAN-FOCUSED-OPTIMIZER (see for e.g. noisy SGD in [8]). In such a scenario,460

we exploit the negative eigenvalues of the Hessian to escape saddle points by using isotropic noise, and do461

not explicitly use ISO. For these methods, under strict-saddle point property [8], we can show convergence to462

local optima within our framework.463

14

Figure 5: Comparison of various methods on a Deep Autoencoder on CURVES (top) and MNIST (bottom).
Our mix approach converges faster than the baseline methods and uses relatively few ISO calls in comparison
to APPROXCUBICDESCENT

We primarily focused on obtaining second-order critical points for nonconvex finite-sums (1). This does464

not necessarily imply low test error or good generalization capabilities. Thus, we should be careful when465

interpreting the results presented in this paper. A detailed discussion or analysis of these issues is out of scope466

of this paper. While a few prior works argue for convergence to local optima, the exact connection between467

generalization and local optima is not well understood, and is an interesting open problem. Nevertheless, we468

believe the techniques presented in this paper can be used alongside other optimization tools for faster and469

better nonconvex optimization.470

15

	Introduction
	Background & Problem Setup
	Generic Framework
	Convergence Analysis
	An Example Instantiation
	Practical Considerations

	Experiments
	Related Works
	Proof of Theorem 1
	Svrg and Proof of Lemma 1
	Hessian Descent and Proof of Lemma 2
	Other Lemmas
	Cubic Regularization and its Approximation
	Experiment Details
	Synthetic Problem
	Deep Networks

	Discussion

