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Abstract

We propose a diagonal metric selection for variable metric proximal gradient method (VM-
PG). The proposed metric better captures the local geometry of the problem and provides
improved convergence compared to the standard proximal gradient (PG) methods with
Barzilai-Borwein (BB) stepsize selection. Further, we provide convergence guarantees for
the proposed method and illustrate its advantages over traditional PG with (BB) through
empirical results.

1 Introduction
We tackle a convex optimization problem in the composite form,

minimize
x∈Rn

F (x) := f(x) + g(x). (1)

where, f is convex and differentiable under dom f and g is convex and non-differentiable under dom g. This
structured form (1) appears across a wide range of machine learning problems like, classification, regression,
matrix completion, nonnegative matrix factorization etc. Proximal gradient-type methods have been widely
adopted for such non-differentiable problems. These methods offer several advantages like, low per-step
computation costs, theoretical guarantees under mild conditions, and practical rules for stepsize selections
[12, 5, 1, 15]. The generic form of the variable metric proximal gradient method [4, 13, 10] is provided in
Algorithm (1).

Algorithm 1 Variable metric proximal gradient (VM-PG)
given a starting point x0 ∈ domf
repeat

1. Update metric Uk
2. yk+1 = xk − U−1k ∇f(xk)

3. xk+1 = proxg,Uk
(yk+1)

= argmin
x

(g(x) +
1

2

∥∥yk+1 − x
∥∥2
Uk

)

until stopping criterion
∥∥yk+1 − yk

∥∥
2
≤ εtol satisfied

Here xk is the kth iterate, Uk ∈ Sn++ is the positive definite metric at the kth iteration, and ‖z‖U =
√
zTUz

is U -norm, and proxg,U is the scaled proximal mapping of g relative to metric U [8].

Special cases. The Algorithm 1 transforms to the standard proximal gradient algorithm for Uk = α−1k I [1]
(with scalar stepsize αk), and the proximal (quasi-)Newton method for Uk ≈ Hk, (the Hessian at xk) [2, 9].
These special cases have their respective pros and cons. For example, proximal Newton-type methods provide
fast convergence but worse per-step computation costs. On the other hand, proximal gradient methods have
computationally attractive step updates, but exhibit relatively slower convergence behavior.
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Summary of contributions. In this paper we propose a new diagonal Borzilai-Borwein (BB)-type metric for
Uk (shown in (4)). The proposed metric exhibits better convergence behavior compared to scalar BB [11] ,
typically used for proximal gradient methods. This is achieved through individual scaling of the coordinates
resulting to a well-conditioned local geometry at each step. Further, the per-step computation cost and memory
requirements is similar to the standard BB, and is much cheaper than proximal Newton methods. Finally,
we provide the convergence guarantees and the empirical results in favor of the proposed metric selection.
Discussions on several other computational benefits such as no matrix inversion, parallelization, and in most
cases a closed-form solution have been omitted in this version of the paper.

2 Metric selection
The proximal gradient step can be viewed as minimizing the overall function F where the differentiable part f
is approximated into its second order form (w.r.t U ) at x [3],

proxg,U (x− U−1∇f(x)) = argmin
y

g(y) + f(x) +∇f(x)T (y − x) +
1

2
‖y − x‖2U .

This motivates setting Uk ≈ Hk as a desirable choice. However, any such approximations should satisfy the
secant condition, i.e,

Uks
k ≈ yk. (2)

for the step sk = xk − xk−1 and gradient change yk = ∇g(xk)−∇g(xk−1).

Barzilai and Borwein (BB). is a very popular approach that finds the scalar curvature of the Hessian, (setting
Uk = αkI) by satisfying (2). Depending on the residual type used for (2), the two most widely used BB
stepsizes are [15],

(BB 1) αkSD =
∥∥sk∥∥2

2
/〈sk, yk〉, (BB 2) αkMG = 〈sk, yk〉/

∥∥yk∥∥2
2
. (3)

A more practical choice is a hybrid between these two stepsizes, with additional safeguarding for numerical
stability (see [15, 6] for details). However, one major caveat is that such selections may deviate from secant
condition (2) too much when there is a huge discrepancy between the step (sk) and gradient-change (yk)
directions.

Diagonal BB metric. To accommodate for such differences between the step and gradient-change directions
we introduce a diagonal metric as provided below,

minimize
u∈Rn

∥∥Usk − yk∥∥2
2

+ µ ‖U − Uk−1‖2F (4)

subject to (MαkSD)−1I � U � (αkMG/M)−1I, U = Diag(u)

This proposed formulation strikes a balance between satisfying the secant rule (2) and being consistent with
the previous metric. This balance is controlled by the user-defined parameter µ. Further, there is an additional
constraint to bound the metric U between the two BB stepsizes (shown in (3)) scaled by parameter M ≥ 1 .
This problem (4) has a simple closed-form solution as shown below. For each coordinate i = 1, . . . , n, the
diagonal element uk of Uk is

uki =


1

Mαk
SD

ûi <
1

Mαk
SD

M
αk

MG

ûi >
M
αk

MG

ûi otherwise

, where ûi =
siyi + µuk−1i

s2i + µ
. (5)

Nonmonotone line-search. Finally, we perform a nonmonotonic line-search similar to [7, 14]. Now, for a
given current iterate xk and (a potential) next iterate xk+1, we check whether (xk, xk+1) satisfies

f(xk+1) < f̂k + 〈xk+1 − xk,∇f(xk)〉+
1

2

∥∥xk+1 − xk
∥∥2
Uk

(6)

where f̂k = max{fk−1, fk−2, . . . , fk−min(MLS ,k)} and a positive integerMLS . Else, we backtrack and scale
the metric Uk by a factor β > 1. The algorithm is provided next.
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Algorithm 2 Subroutine: Update metric with nonmonotone line-search
given parameters MLS , β > 1, iterates xk−1, xk, and gradients ∇f(xk−1),∇f(xk)

Compute αkSD, αkMG from (3)
Initialize metric Uk from (5)
xk+1 := proxg,Uk

(xk − U−1k ∇f(xk))

repeat
1. Uk := βUk
2. xk+1 := proxg,Uk

(xk − U−1k ∇f(xk))

until line-search criterion (6) satisfied
return metric Uk and next iterate xk+1

Under this metric update 2, the algorithm 1 follows Theorem (2.1).

Theorem 2.1 Assume the gradient∇f is L-Lipschitz. For the sequence of Uk ∈ Sn++ generated by Algorithm
2 at each iteration, limk→∞ F (xk) := F ?.

3 Experiments
We demonstrate the performance of the VM-PG with diagonal BB metric through several experiments. For
each experiment, we consider different problem types shown below,

Quadratic programming with nonnegative constraint.

minimize
x∈Rn

1

2
xTQx+ qTx+ p+ 1{z|z≥0}(x)

Here, Q ∈ Sn++. This is a generic problem typically seen in many machine learning applications like,
hard-margin SVMs etc.

Linear/Logistic regression. ForN samples of a(i) ∈ Rn and the associated label b(i), consider the regression
problem

minimize
x∈Rn

1

N

N∑
i=1

l
(
x; a(i), b(i)

)
+ g(x)

For our experiments we consider two popular loss functions: least square (linear) loss l(θ; a, b) =
∥∥θTa− b∥∥2

2

and logistic loss l(θ; a, b) = log(1 + e−bθ
T a). As the non-differentiable regularizer we use nonnegative

constraint or lasso penalty, i.e., g(x) = 1{z|z≥0}(x) or g(x) = λ ‖x‖1 with λ ∈ R+ respectively. For the
experiments we fix λ = 10−4.

VM-PG algorithm parameters. Throughout this paper we set µ = 10−4, M = 1 for metric selection (5),
and MLS = 10, β = 2 for line-search (6). We adopt modified stopping criterion [6] with εtol = 10−6 for
QP and LS problems, εtol = 10−3 for logistic regression. Maximum iteration=500 is used. We compare the
VM-PG (with Diagonal BB) to standard PG (with BB).

Data generation. For all the experiments we consider high-dimensional data with n = 1000. For QP,
we generate quadratic objectives with two different condition numbers κ = 5 and 500. For the regression
problems, we use small (N = 200) and large (N = 1000) number of samples generated from a(i) ∼ N (0,Σ).
For some x? ∈ Rn, we compute its associated true labels, adding some noise to generate noisy labels b(i)

(in R or in {−1, 1}) over N samples. For linear regression, b(i) =
(
a(i)
)T
x? + v where v ∼ N (0, I). For

logistic regression, generate y = σ
((
a(i)
)T
x?
)

+ 0.3 w where σ is sigmoid function σ(x) = log(1 + e−x)

and w ∼ Unif[0, 1], and then take b(i) = 1 if y ≥ 0.5 or b(i) = −1 otherwise. Finally, the data matrix
A ∈ RN×n is column-wise normalized to the unit `2 norm.
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f(x) QP QP f(x) LS log. reg. log. reg.
g(x) nonneg. nonneg. g(x) nonneg. nonneg lasso.
(κ, n) (5, 103) (500, 103) (N , n) (200, 103) (200, 103) (200, 103)

PG(BB) 9.8 16.1 PG (BB) 52.3 44.5 116.8
VM-PG

(Diagonal BB) 8.2 12.2 VM-PG
(Diagonal BB) 46.15 36.2 129.5

Table 1: Number of iterations required for the convergence of VM-PG (Diagonal BB) and PG (BB).

(a) QP with κ = 5 (b) QP with κ = 500 (c) LS with N = 200

(d) Log. Reg. with N = 200 (e) Penalized Log. Reg. with N = 200

Figure 1: Convergence comparison. (a) - (d) are with nonnegative constraint, (e) is with lasso penalty with
λ = 10−4.

Results. Table 1 shows the total number of iterations required for convergence for VM-PG vs. PG (BB),
averaged over 100 experiments. For well-conditioned Q with κ ∼ 5, both the methods converge fast without
any notable differences (Figure 1(a)). However the VM-PG with our diagonal BB selection outperforms
standard PG (BB) for the ill-conditioned Q with κ ∼ 500 (Figure 1(b)).

For both the least square and logistic regression under nonnegative constraint, VM-PG exhibits faster or stable
converge behavior compared to PG (with BB) (see Figure 1(c), (d)). However, for logistic regression under
lasso penalty, there is no clear advantage. VM-PG is more stable in the low-precision regime, whereas PG
(BB) outperforms in the high-precision regime (Figure 1(e)). The results with large sample size settings shows
no notable difference between the two methods, and has been omitted. This shows that for ill-conditioned
problems, having an Euclidean metric as the Hessian approximation may not be sufficient to capture the
idiosyncrasies of the local geometry. Hence, allowing additional flexibility through a diagonal metric may
be desirable. Additional experiments for other problem types like, QP with lasso penalty, phase retrieval,
non-negative matrix factorization etc., shall be included in a longer version.

4 Discussion and Conclusion
This paper proposes a diagonal BB metric for the variable proximal gradient method. The proposed diagonal
metric provides a better estimate of the local Hessian compared to the naive BB approach. Combined with a
nonmonotonic line-search the overall algorithm is guaranteed to converge. Finally, empirical results shows
improved convergence behavior for the proposed methodology under ill-conditioned settings.
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