
Neural network inversion beyond gradient descent

Eric Wong ericwong@cs.cmu.edu
Carnegie Mellon University
J. Zico Kolter zkolter@cs.cmu.edu
Carnegie Mellon University

Abstract

In this paper, we tackle the problem of inverting deep networks, the task of finding an input
that minimizes some criterion of the output of a deep network. We approach this problem
by reformulating the network propagation as a constrained optimization problem and solve
it using an operator splitting approach, the alternating direction method of multipliers. We
show improvement in both iteration count and solution quality on a LeNet architecture in
various settings, and we further apply this method to a large-scale network, VGG-11.

1 Introduction

This paper deals with the problem of "inverting" a neural network model: given some network function
f : X → Y , for some y ∈ Y we want to find the x ∈ X such that f(x) = y. Or more generally, if ` : Y → R
is any function defined over the network output (or it’s intermediate units), we may want to find an input
x that minimizes `(f(x)).1 Numerous applications have recently been proposed that rely on such methods:
adversarial examples [1, 2, 3] optimize over inputs to to a nominal input to maximize the loss that the network
will suffer; neural style algorithms [4] optimize over input to the network to maximize similarity of internal
gram matrices of the network to match a some target; and GAN-based image completion algorithms optimize
over a latent state (input to a generator network) to maximize similarity to some partially observed output [5].

Yet the workhorse for all these applications, the algorithm that actually performs the minimization of `(f(x)),
is virtually always just some form of gradient descent (including adaptive gradient methods). While this is
appealing in its simplicity, it also ignores a great deal of techniques that have become prevalent in modern op-
timization, such as operator splitting approaches (which can substantially outperform gradient-based methods
on many classes of optimization problems).

In this paper, we consider an alternative approach based upon (nonconvex) operator splitting techniques for
constrained optimization. In particular, instead of considering a neural network as a simple feedforward
function, we consider it as set of non-convex constraints, namely 1) (convex) equality constraints of each
layer with the activation of the previous layer and with the pre-activation of the next layer; and 2) non-convex
constraints representing non-linearities such as the rectified linear unit or the maxpooling operator. We then
derive an operator splitting approach (we use the alternating direction method of multipliers (ADMM) [6],
as a simple example, though other splitting approaches could be similarly applies) that seeks to optimize the
objective `(f(x)) by representing f(x) via these constraints. A similar approach was used by Taylor et al.
[7], though in the context of training the network rather than inverting it.

We show two crucial points: 1) the proposed method can improve (both in terms of iteration count and
solution quality) over existing methods in actual use, such as the Adam optimizer, which is heavily used
in practice for such tasks. And (perhaps most importantly) 2) we derive and demonstrate how to apply the
method to realistic large-scale networks actually used in modern deep learning, specifically convolutional
networks. Properly applying operator splitting to these convolutional architectures requires handling the
closed-form solution of operator splitting updates involving convolutional architectures, which we achieve
by using FFT representations of the convolutions as additional linear operators combined with carefully
encoded zero-padding. In this aspect we notably build upon similar work such as that in Taylor et al. [7],
which doesn’t consider convolutional models of any type. We demonstrate the application to the VGG11
network, showing that each operator splitting iteration is only a few times more costly than a forward and
backward pass for backprop.

1Although this problem may be viewed as just arbitrary optimization over the neural network input, we prefer the
term "inversion" to describe the task because "optimization" in neural networks virtually always refers to optimization
over the network parameters, not the input.

OPTML 2017: 10th NIPS Workshop on Optimization for Machine Learning (NIPS 2017).

2 Inversion using ADMM

2.1 Formulation as a constrained optimization problem

For a given neural network f : X → Y , any loss function ` : X × Y → R, and a desired output y ∈ Y , the
model inversion problem is to find an input example x ∈ X which minimizes `(f(x), x). While in general `
can be a function of any of the intermediary layer outputs, we consider the case where ` is dependent on the
input and output space, which allows us to represent constraints or regularization on the input.

min
x
`(x, f(x)) (1)

To turn this into a constrained optimization problem, we use k variables zi at each of the k layers equal to the
value of each layer:

min
z1,...,zk

`(z1, zk) s.t. (2)

zi+1 = ai(Wizi + bi), 1 ≤ i < k) (3)

where Wi, bi are the weights at each layer and ai are the activation functions (the weights Wi, bi are not
restricted to be matrices, but can be any linear operation). We introduce two additional variables (ṽi, vi) at
each intermediary layer, equal to the layer’s pre- and post-activation, and constrain them to the set of inputs
and outputs of the corresponding activation, defined as Ai = {(x, y)|ai(x) = y}.

min
z1,...,zk

`(z1, zk) s.t. (4)

zi+1 = vi, 1 ≤ i < k (5)
ṽi =Wizi + bi, 1 ≤ i < k (6)

(ṽi, vi) ∈ Ai, 1 ≤ i < k (7)

2.2 ADMM update iterates

Following the standard ADMM methodology, we minimize the augmented Lagrangian with dual variables
(ũi, ui) for 1 ≤ i < k, which results in the following ADMM zi iterates.

zk = argmin
zk

`(z1, zk) +
ρ

2
||zk − vk−1 − uk−1||2 (8)

zi = (I +WT
i Wi)

−1(vi−1 + ui−1 +WT
i (−bi + ṽi + ũi)), 1 < i < k (9)

z1 = argmin
z1

`(z1, zk) +
ρ

2
||W1z1 + b1 − ṽ1 − ũ1||2 (10)

Depending on the choice of `, the updates for z1 and zk may have a closed form expression (e.g., this is the
case for linear and mean squared error). In this case, the updates have the same complexity as a forward or
backwards pass in backpropagation, and in practice is about 2-3 times slower per iteration. Otherwise, we
can solve these two updates using a Newton based solver (e.g. for rectangular bounds and cross entropy loss),
which converges rapidly due to strong convexity.

The (ṽi, vi) update is a projection onto Ai, denoted as PAi , and the (ũi, u) update is standard for ADMM.

(ṽi, vi) = PAi
(Wizi + bi − ũi, zi+1 − ui), 1 ≤ i < k (11)

(ũi, ui) = (ũi + ṽi − (Wizi + bi), ui + vi − zi+1), 1 ≤ i < k (12)

For our setting, we use projections onto linear activations, rectified linear units, max-pooling activations, and
combinations of the aforementioned, however the approach is not restricted to these. The final algorithm is
to simply repeat these updates until converegence.

Initialization If the objective ` contains a penalty or regularization around some starting example x0 ∈ X
(e.g. an L2 penalty), a natural initialization for the algorithm is to use the values of a forward pass on this
example through the network. Since all constraints are satisfied by this initialization, changes in the variables
propagate from the output layer in a fashion similar to backpropagation.

2

Figure 1: Plot of objective value of a neural network while inverting with ADMM when using different update
orderings. The backwards ordering is most efficient.

0 5 10 15 20
iterations

10 5

10 4

10 3

10 2

10 1

100

101

Cr
os

s e
nt

ro
py

 lo
ss

 +
 L

2

ADMM ordering
backward pass
forward pass
alternating
random

Figure 2: Comparison of ADMM-based inversion vs. ADAM and projected gradient descent on a LeNet
architecture. Left: minimizing cross entropy loss with an L2 regularization. Right: minimizing cross entropy
loss within a bounded rectangle. Here, ADAM is run until it reaches the boundary.

0 20 40 60 80 100
iterations

10 5

10 4

10 3

10 2

10 1

100

101

Cr
os

s e
nt

ro
py

 lo
ss

 +
 L

2

ADAM
ADMM

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
iterations

10 5

10 4

10 3

10 2

10 1

100

101

Cr
os

s e
nt

ro
py

 lo
ss

ADAM
ADMM
Projected GD

Convolutional layers The VGG architecture [8] presents a challenge in handling the convolutional layers.
We exploit the fact that with proper padding, convolutional mappings are simply element-wise multiplication
in the FFT space, an idea commonly utilized in convolutional networks [9, 10]. We can then implement
a convolution as a linear map convi(x) = Wix = U∗DUx, where U,U∗ are the FFT and inverse FFT
operations and D is a diagonal matrix performing the element-wise product in the FFT space. To achieve the
proper padding, each projection operator PAi

can be augmented to project from a given padding to a desired
padding.

3 Experimental results

3.1 LeNet

This first set of experiments are run on a LeNet architecture trained on the Cifar-10 dataset. For ADAM and
projected gradient descent we use a step size of 0.01 and for ADMM we use ρ = 10−5.

Order of updates While traditionally the ADMM updates are zi updates for all i, followed by (ṽi, vi)
and (ũi, ui), the structure of a neural network provides a natural ordering: a ’forward’ or ’backwards’ pass,
which switches between zi and (ṽi, vi) updates. Alternating forwards and backwards passes, which most
closely mimics the classical backpropagation algorithm, performed worst while the backward pass was most
effective, and so we use the backward pass ordering for all remaining experiments.

Performance For the LeNet architecture, we minimize the cross entropy loss subject to L2 regularization
and bounded rectangle constraints on the input, and compare them to using ADAM (and projected gradient
descent in the case of bounded rectangular constraints) in figure 2. We see that ADMM is able to improve on
both the iteration count and objective value in both settings,.

3.2 VGG

The next set of experiments are to demonstrate the qualitative ability of the method to work on deep net-
works, namely VGG-11 on Cifar-10. In this experiment, we invert a VGG network with softmax loss and

3

Figure 3: Convergence plots for ADMM on VGG-11. Left: Objective value over iterations. Right: ADMM
primal and dual residuals for the ADMM constraints.

0 20 40 60 80 100 120
iterations

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

101

Cr
os

s e
nt

ro
py

 lo
ss

 +
 L

2

ADAM
ADMM

0 50 100 150 200 250 300
iterations

10 2

10 1

100

101

Re
sid

ua
l n

or
m

Pre-activation primal residual
Post-activation primal residual
Pre-activation dual residual
Post-activation dual residual

Figure 4: An adversarial example. From left to right: original image, projected gradient, ADMM. Both
projected gradient and ADMM are able to fool the classifier, changing the label of the example below from
ship to airplane with probability 1.

0 5 10 15 20 25 30

0

5

10

15

20

25

30
0 5 10 15 20 25 30

0

5

10

15

20

25

30
0 5 10 15 20 25 30

0

5

10

15

20

25

30

L2 regularization on the input. We see in figure 3 that ADMM is able to minimize the objective to the same
value as ADAM, and have converging residuals despite the deep architecture and the non-convexity of the
problem, showing that operator splitting methods can be used to optimize deep networks. However, some
work remains to make these methods computationally competitive with current gradient based approaches in
this setting.

In this second experiment, we use the ADMM method with bounded box constraints on the input to generate
adversarial examples, by minimizing a linear function of the correct output minus the desired class, subject a
bounding box constraint. We find that ADMM is able to achieve the same quality of adversarial example as
projected gradient, as both are able to completely fool the VGG network with probability 1.

4 Discussion

We considered operator splitting techniques, namely ADMM, for inverting neural networks. The basic idea is
to reformulate the neural network as a set of non-convex constraints and applies a wide range of architectures.
We apply the method to modules found in typical deep learning architectures, and show empirical results on
the LeNet architecture which outperforms gradient descent based approaches, but future work is required
to bring this speed to deeper networks like VGG-11. However, despite the reduction in speed, the operator
splitting technique is able to find solutions qualitatively as good as existing methods on deeper models.

References
[1] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,

and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

[2] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

[3] Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled: High confi-
dence predictions for unrecognizable images. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2015.

[4] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. A neural algorithm of artistic style. arXiv
preprint arXiv:1508.06576, 2015.

4

[5] Raymond Yeh, Chen Chen, Teck Yian Lim, Mark Hasegawa-Johnson, and Minh N Do. Semantic image
inpainting with perceptual and contextual losses. arXiv preprint arXiv:1607.07539, 2016.

[6] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed optimization
and statistical learning via the alternating direction method of multipliers. Foundations and Trends R© in
Machine Learning, 3(1):1–122, 2011.

[7] Gavin Taylor, Ryan Burmeister, Zheng Xu, Bharat Singh, Ankit Patel, and Tom Goldstein. Training
neural networks without gradients: A scalable admm approach. In International Conference on Machine
Learning, pages 2722–2731, 2016.

[8] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

[9] Tyler Highlander and Andres Rodriguez. Very efficient training of convolutional neural networks using
fast fourier transform and overlap-and-add. arXiv preprint arXiv:1601.06815, 2016.

[10] Oren Rippel, Jasper Snoek, and Ryan P Adams. Spectral representations for convolutional neural net-
works. In Advances in Neural Information Processing Systems, pages 2449–2457, 2015.

5

	Introduction
	Inversion using ADMM
	Formulation as a constrained optimization problem
	ADMM update iterates

	Experimental results
	LeNet
	VGG

	Discussion

