
A Note on Extended Formulations for Cardinality-based
Sparsity

Cong Han Lim clim9@wisc.edu
Wisconsin Institute for Discovery, University of Wisconsin-Madison

Abstract

We provide compact convex descriptions for the k-support and ordered-weighted `1 (OWL)
norms. This can be used in convex optimization solvers by non-experts to evaluate the utility
of these norms in their applications and also to incorporate additional constraints. The first
set of formulations we provide are based on simple dynamic programming concepts and
have O(nk) constraints for the k-support norm and O(n2) constraints for the OWL norm.
The second set uses sorting networks to achieve O(n log k) and O(n log n) respectively. We
assume no prior background on extended formulations and discuss practical issues in CVX.

1 Introduction

The `1 norm is synonymous with sparsity within the machine learning and statistics communities, and two
generalizations of this have been introduced recently. The first is the k-support norm [2]:

‖x‖spk := min
{∑

I∈Gk
‖vI‖2 : supp(vI) ⊆ I,

∑
I∈Gk

vI = x
}
,

where Gk is the set of all cardinality k subsets of [n]. This an alternative to the elastic net (which simply adds
the `1 and `p norm) by using k-sparse vectors with unit `p norm. Another extension of the `1 norm is to the
OSCAR/OWL/SLOPE norms [5, 12, 4] (we use OWL from here on)

‖x‖owl
w :=

∑
i∈[n]

wi|x↓i |,

a variant of the weighted `1 norm where x↓ denotes the vector obtained by sorting the entries in descending
magnitude and w1 ≥ w2 ≥ . . . ≥ wn ≥ 0. Both of these norms are known to offer better prediction
performance and handle correlated variables better than the `1 norm. The OWL norm also clusters correlated
variables and controls the false discovery rate.

Our goal is to make these norms more accessible by providing efficient ways to model the cones
{(x, λ) ∈ Rn+1 : ‖x‖≤ λ} (1)

using linear and convex constraints for each of the two norms, and also for variants induced by different `p
norms [10]. These can be used in existing frameworks for modeling and solving convex programs (e.g. CVX
and JuMP) and we can easily incorporate the norm in both the objective and constraints. For example, we can
model the standard forms of regularized problems:

(a)minx∈Rn f(x) s.t. ‖x‖≤ λ, (b)minx∈Rn‖x‖ s.t. f(x) ≤ σ, (c)minx∈Rn f(x) + λ‖x‖.

We use two different methods to construct these formulations. The first resembles dynamic programming and
is simple to describe, but has many linear and nonlinear constraints. The second leverages the sorting network-
based construction of the permutahedron by Goemans [8] and is significantly more compact. The extended
formulations we present here are new, and with the exception of the OWL norm [5], no polynomial-sized
formulations for these norms have been provided in the literature.

When to use extended formulations. We are able to solve regression problems with n = 100 within
seconds and n = 1000 within minutes using CVX with Gurobi on a modern dual core laptop. We provide
our code at https://github.com/limconghan, which can be used by anyone with basic knowledge
of CVX and can be used for small to medium-sized problems. We can also easily incorporate additional
constraints or further change the formulation without having to modify any algorithms. This allows one to
rapidly prototype new uses for the norms.

For practitioners familiar with convex optimization techniques who need faster methods, we recommend using
the efficient O(n log n) algorithms for the projection operator [7] or the proximal operator [4, 12] for these
norms. If more constraints are present, we can still use these operators with splitting methods such as ADMM.

OPTML 2017: 10th NIPS Workshop on Optimization for Machine Learning (NIPS 2017).

https://github.com/limconghan

Preliminaries. An extended convex formulation of a set S ∈ Rn is a collection of convex constraints
describing a higher-dimensional set T ∈ Rn+m such that S = {s ∈ Rn : (s, t) ∈ T}. Using additional
variables can significantly reduce the number of constraints needed. For example, the `1 ball requires O(2n)
constraints in Rn, but with another n variables only requires O(n) constraints.

We adopt the atomic norm perspective [6] in this paper. Let A denote a set of vectors (atoms). The atomic
norm is given by the gauge function of A: ‖x‖A:= inf{λ > 0 : x ∈ λ conv(A)}. In other words, the unit
ball of the norm {x : ‖x‖A≤ 1} is given by conv(A).
We now describe the atoms of the norms induced by a particular choice of an `p norm. The atoms of the
(k, p)-support norm are precisely the set of vectors with unit `p norm that are supported by at most k indices
(the standard k-support norm has p = 2). Let `q denote the dual of `p (i.e. 1/p+ 1/q = 1). The OWL norm is
a special case of the smooth OWL norm [10, 11] with p =∞, and the atoms are⋃m

i=1

{
x : ‖x‖p=

(∑i

j=1
wi

)−1/q
, |supp(x)|= i

}
. (2)

The atoms corresponding to each i are precisely the atoms for the (k, p)-support norm where k = i with a
scaling factor. This last fact means that we can leverage constructions for (k, p)-support norms to obtain those
for the smooth OWL norm. For notational convenience, we will also refer to the generalized `p variants by the
original name.

2 Extended Formulations via Dynamic Programming Ideas

We first describe how to model the atoms of the k-support norm. Consider the following process for picking k
indices from [n]:

Start at the first index with a sparsity budget of k and proceed through the indices in order.
At index i, decide if we want to pick it. If yes, decrease the sparsity budget by one. Repeat
this until we exhaust the sparsity budget or reach the end.

Figure 1 illustrates this process. The pair in each box represents the current index and the current remaining
sparsity budget. The diagonal arrow pointing out from (i, j) means that we have picked index i when we have
j budget left.

Figure 1: Picking k indices.

The formulation for the k-support norm builds on the process. We
now have to allocate an `p budget as we pick the support. Assume all
variables (except for xi) are nonnegative:

b0 ≥ b1,k (3)
bi,j ≥ ci,j + ui,j for i ∈ [n], j ∈ [k] (4)
ci,j ≥ ‖ai,j , li,j‖p for i ∈ [n], j ∈ [k] (5)

bi+1,j ≤ ui,j + li,j+1 for i ∈ [n− 1], j ∈ [k − 1] (6)

|xi| ≤
∑

j∈[k]
ai,j for i ∈ [n] (7)

The b variables correspond to the `p budget, the c and u variables correspond to the case where we pick or did
not pick the index respectively, and the a and l variables describe the allocated and left over `p budget after
picking the particular index.

Figure 2: OWL flowchart.

The OWL formulation exploits the fact that the unit ball is the
convex hull of many k-support balls over different levels of k.
The formulation makes us to pick a k corresponding to one set in
the union (2) up front, and the rest of the process then proceeds
in the same manner. Thus, the only change we need to make is
to replace (3) in the k-support norm formulation with

b0 ≥
∑n

j=1

(∑j

i=1
wi

)1/q
b1,j (8)

We now show that these formulations model the correct sets. If at most one term on the right side of inqualities
(4) and (6) is nonzero, then we have at most k nonzero xi and we obtain an atom of the set. If both terms in
(4) are nonzero, then we are handling a convex combination of atoms.

2

Proposition 2.1. The dynamic programming based constructions give us O(nk) and O(n2) constructions for
the k-support and OWL norms respectively.

3 Extended Formulations via Sorting Networks

We can obtain more compact extended formulations by exploiting the symmetry of these norms. For any set
S, let P(S) := conv ({x : x is the permutation of some s ∈ S}), and let P±(S) := conv({x : x or − x ∈
P(S)}). We say that a set S is closed under sorting if s↓ ∈ S for all s ∈ S.
Theorem 3.1. [8, 9] If S is nonnegative and closed under sorting, then we can describe the set P(S) and
P±(S) with O(n log n) additional variables and linear inequalities given a representation of S.

Construction behind Theorem 3.1. Sorting networks are the key ingredient here. They can be viewed
as a comparison-based sorting algorithm that a priori decides on all comparisons to make, as opposed to
traditional ones which choose comparisons adaptively. A classic result by Ajtai et al. [1] shows that O(n log n)
comparators suffice, though more practical sorting networks with simple recursive constructions require
O(n log2 n) comparators Batcher [3].

Let us first describe how to model P({v↓}) for any sorted vector v↓ ∈ Rn. Suppose we have a sorting network
on n inputs with m comparators. We first introduce a set of nonconvex constraints for each comparator
k = 1, 2, . . . ,m to indicate the relationships between the two inputs and the two outputs of each comparator:

αk
1 + αk

2 = βk
1 + βk

2 , βk
1 = max(αk

1 , α
k
2), βk

2 = min(αk
1 , α

k
2). (9)

Let xi and zi, i = 1, 2, . . . , n denote the x variables corresponding to the ith input or output to the entire
sorting network, respectively. by setting z = v↓, it is easy to see that x can now take on the value of any
permutation of v. We can convexify (9) to obtain

αk
1 + αk

2 = βk
1 + βk

2 , βk
1 ≥ αk

1 , βk
2 ≥ αk

2 , (10)

and this gives us a construction for P({v↓}).
The construction above more generally gives us P(S) for any S closed under sorting, and obtaining P±(S)
is straightforward. We simply need to introduce n variables and we have P±(S) = {x : −s ≤ x ≤
s for some s ∈ P(S)}.

Finding appropriate S for the norms. Theorem 3.1 reduces the problem to finding S that are closed under
sorting where P±(S) gives us the correct cones. For the k-support norm, this is just

{x ∈ Rn : ‖(x1, . . . , xk)‖p≤ λ, xk+1, . . . , xn = 0} . (11)

Figure 3: OWL construction of S.

The OWL norm requires a little more work, and we use a construction
akin to the ones in the previous section. See figure 3 for the intuition.

b0 ≥
∑n

i=1

(∑i

j=1
wj

)1/q
bi (12)

bn ≥ cn (13)
ci ≥ ‖(xi, li)‖p for i ∈ [n] (14)
ci ≤ bi + li+1 for i ∈ [n− 1] (15)

Improving the bound to O(n log k) for k-support norm. Instead of using a full sorting network, we
consider a networks that is only guaranteed to sort k-sparse positive inputs (inputs that have only k positive
entries and are zero everywhere else). We will term these as k-sparse sorting networks. (Since these do not
sort every input, this is strictly speaking an abuse of the term ‘sorting network’.)

A k-sparse sorting network can be constructed by composing many smaller full sorting networks. Given a set
of indices A ⊆ [n], we let SN (A) denote a O(|A|log|A|) sorting network over indices i ∈ A that sorts all
inputs over just those indices and SN k−sparse(A) denote a k-sparse sorting network over those indices. We
will now describe how to construct SN k−sparse(A) recursively.

For |A|≤ 2k, we can use SN (A) as SN k−sparse(A). As for A = [i, j] where |A|> 2k, we can
compose the following three sorting networks to get SN k−sparse(A): (1) SN k−sparse

([
i,
⌊
i+j
2

⌋])
,

SN k−sparse
([⌊

i+j
2

⌋
+ 1, j

])
, and SN

(
[i, i+ k − 1] ∪

[⌊
i+j
2

⌋
+ 1,

⌊
i+j
2

⌋
+ k
])

.

3

Proposition 3.2. There are k-sparse sorting networks with O(n log k) comparators.

If the vector v↓ is also k-sparse and positive, then the construction (10) guarantees that every permutation of v
can be obtained. So this ‘sorting network’ suffices if these are the atoms we want.
Proposition 3.3. The k-sparse sorting network gives us an extended formulation for k-support norms with a
‖·‖p≤ 1 constraint and O(n log k) variables and linear constraints.

The bounds given in Propositions 3.2 and 3.3 assume that we use O(n log n)-sized sorting networks. Using
the more practical O(n log2 n) sorting networks by Batcher [3], we obtain O(n log2 k) instead.

4 CVX Implementation: Code and Observations

(a) (b) (c) (d) Running time vs. n

Figure 4: CVX code for constraints of the sorting network-based formulations and running times. We combine (a) and (c)
for k-support, and (b) and (c) for OWL. The matrices A and B in (c) are generated based on the sorting network extended
formulation (10).

We tested the running times of the various formulations on a Intel Core i5-4200U (dual core) laptop with
4GB of RAM in MATLAB R2017a, CVX 2.1, and Gurobi 6.0. The main implementations we compared
are (1) the full sorting network-based k-support formulation, and (2) the full sorting network-based OWL
formulation. We use the O(n log2 n) bitonic sorting network by Batcher [3] in both cases. We also briefly
discuss the dynamic programming-based k-support formulation. Again, the implementation is available at
https://github.com/limconghan.

The test problem we used was minx(1/2)‖y − Ax‖2+λ‖x‖, where A is a m × n matrix with each entry
picked uniformly at random from [0, 1]. We compare the running time (preprocessing + solve times) of the
different methods as we scale n up from 100 to 1000 and set m = n/5. We also discuss the case where n is
fixed while m varies. We set p = 2 and fixed k = 20 in all cases.

The observations from these initial experiments are:

• Conic norm constraints (i.e. inequalities (5) and (14), which have an `p term) significantly increases
the preprocessing time and this makes the larger dynamic programming formulations very slow.
• The dynamic programming k-support formulation takes about 200 seconds for k = 20, n = 100,m =
20, and about 500 for k = 20, n = 200,m = 40.
• The time to solve the programs are fairly similar (within a factor of 1.5) between the two sorting

network formulations. The main difference is in the preprocessing time.
• As the number of rows inA approaches n, the solve times for both formulations jumps up significantly

while the processing time remains roughly similar.

Acknowledgements

We would like to thank Stephen Wright for all the discussions and feedback. This work was supported by NSF
award CMMI-1634597, ONR Award N00014-13-1-0129, and AFOSR Award FA9550-13-1-0138.

4

https://github.com/limconghan

References
[1] M. Ajtai, J. Komlós, and E. Szemerédi. An O(n log n) sorting network. In Proceedings of the 15th

Annual ACM Symposium on Theory of Computing - STOC ’83, pages 1–9, New York, New York, USA,
Dec. 1983. ACM Press. ISBN 0897910990. doi: 10.1145/800061.808726.

[2] A. Argyriou, R. Foygel, and N. Srebro. Sparse prediction with the k-support norm. In Advances in
Neural Information Processing Systems, pages 1457–1465, 2012.

[3] K. E. Batcher. Sorting networks and their applications. In Proceedings of the April 30–May 2, 1968,
spring joint computer conference on - AFIPS ’68 (Spring), page 307, New York, New York, USA, Apr.
1968. ACM Press. doi: 10.1145/1468075.1468121.

[4] M. Bogdan, E. van den Berg, C. Sabatti, W. Su, and E. J. Candès. Slope—adaptive variable selection via
convex optimization. Ann. Appl. Stat., 9(3):1103–1140, 09 2015. doi: 10.1214/15-AOAS842.

[5] H. D. Bondell and B. J. Reich. Simultaneous Regression Shrinkage, Variable Selection, and Supervised
Clustering of Predictors with OSCAR. Biometrics, 64(1):115–123, mar 2008. ISSN 0006341X. doi:
10.1111/j.1541-0420.2007.00843.x.

[6] V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky. The Convex Geometry of Linear Inverse
Problems. Foundations of Computational Mathematics, 12(6):805–849, dec 2012. ISSN 1615-3375.

[7] D. Davis. An O(n log(n)) Algorithm for Projecting Onto the Ordered Weighted `1 Norm Ball. Technical
report, University of California, Los Angeles, CAM report 15-32, 2015.

[8] M. Goemans. Smallest compact formulation for the permutahedron. Mathematical Programming, Series
B, 153(1):5–11, 2015.

[9] V. Kaibel and K. Pashkovich. Constructing extended formulations from reflection relations. In Facets
of Combinatorial Optimization: Festschrift for Martin Gr otschel, volume 9783642381, pages 77–100.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2013. ISBN 9783642381898.

[10] G. Obozinski and F. Bach. A unified perspective on convex structured sparsity: Hierarchical, symmetric,
submodular norms and beyond. Technical report, Dec. 2016.

[11] R. Sankaran, F. Bach, and C. Bhattacharya. Identifying Groups of Strongly Correlated Variables through
Smoothed Ordered Weighted L1-norms. In A. Singh and J. Zhu, editors, Proceedings of the 20th
International Conference on Artificial Intelligence and Statistics, pages 1123–1131, Fort Lauderdale, FL,
USA, 20–22 Apr 2017. PMLR.

[12] X. Zeng and M. A. T. Figueiredo. The Ordered Weighted `1 Norm: Atomic Formulation, Projections,
and Algorithms. arXiv:1409.4271, Sept. 2014.

5

	Introduction
	Extended Formulations via Dynamic Programming Ideas
	Extended Formulations via Sorting Networks
	CVX Implementation: Code and Observations

