
FreezeOut: Accelerate Training by Progressively
Freezing Layers

Andrew Brock, Theodore Lim, & J.M. Ritchie
School of Engineering and Physical Sciences

Heriot-Watt University
Edinburgh, UK

{ajb5, t.lim, j.m.ritchie}@hw.ac.uk

Nick Weston
Renishaw plc

Research Ave, North
Edinburgh, UK

Nick.Weston@renishaw.com

Abstract

The early layers of a deep neural net have the fewest parameters, but take up the
most computation. In this extended abstract, we propose to only train the hidden
layers for a set portion of the training run, freezing them out one-by-one and
excluding them from the backward pass. Through experiments on CIFAR, we
empirically demonstrate that FreezeOut yields savings of up to 20% wall-clock
time during training with 3% loss in accuracy for DenseNets, a 20% speedup
without loss of accuracy for ResNets, and no improvement for VGG networks.

1 Introduction

Layer-wise pre-training of neural nets [1] [13] has largely been replaced by careful initialization
strategies and fully end-to-end training. Successful techniques such as DropOut [11] and Stochastic
Depth [4], however, suggest that it is not necessary to have every unit in a network participate in
the training process at every training step. Stochastic Depth leverages this to both regularize and
reduce computational costs by dropping whole layers at a time (though it requires the use of residual
connections [3]), while DropOut’s use of masks does not by default result in a computational speedup.

In this work, we are concerned with reducing the time required for training a network by only training
each layer for a set portion of the training schedule, progressively "freezing out" layers and excluding
them from the backward pass. This technique is motivated by the observation that in many deep
architectures, the early layers take up most of the compute budget, but have the fewest parameters
and tend to converge to fairly simple configurations (e.g. edge detectors), suggesting that they do not
require as much fine tuning as the later layers, where most of the parameters reside. The same idea
has been proposed by [9], where it is motivated by the observation that the representations learned by
deep nets can be analytically shown to converge from the bottom up.

2 FreezeOut

We propose a simple modification to the standard backprop+SGD pipeline to reduce training time.
FreezeOut employs cosine annealing (as proposed by [7]) without restarts (as used by [2]) with a
layer-wise schedule, where the first layer’s learning rate is reduced to zero partway through training
(at t0), and each subsequent layer’s learning rate is annealed to zero some set time thereafter. Once a
layer’s learning rate reaches zero, we put it in inference mode and exclude it from all future backward
passes, resulting in an immediate per-iteration speedup proportional to the computational cost of the
layer.

In the simplest version of FreezeOut, each layer Li starts with a single fixed learning rate α, which
anneals to zero at ti, where ti is linearly spaced between a user-selected t0 and the total number of

OPTML 2017: 10th NIPS Workshop on Optimization for Machine Learning (NIPS 2017).



% Into Training
0 10 20 30 40 50 60 70 80 90 100

%
 O

f I
ni

tia
l L

ea
rn

in
g 

R
at

e

0

10

20

30

40

50

60

70

80

90

100

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Output Layer

(a) Unscaled Linear Schedule
% Into Training

0 10 20 30 40 50 60 70 80 90 100

%
 O

f I
ni

tia
l L

ea
rn

in
g 

R
at

e

0

20

40

60

80

100

120

140

160

180

200

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Output Layer

(b) Scaled Linear Schedule

% Into Training
0 10 20 30 40 50 60 70 80 90 100

%
 O

f I
ni

tia
l L

ea
rn

in
g 

R
at

e

0

10

20

30

40

50

60

70

80

90

100

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Output Layer

(c) Unscaled Cubic Schedule
% Into Training

0 10 20 30 40 50 60 70 80 90 100

%
 O

f I
ni

tia
l L

ea
rn

in
g 

R
at

e

0

100

200

300

400

500

600

700

800

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Output Layer

(d) Scaled Cubic Schedule

Figure 1: Per-Layer Learning Rate Schedules for a 5-hidden-layer network with t0 = 0.5.

iterations, as shown in Figure 1(a). Each layer’s learning rate at iteration t is thus given as

αi(t) = 0.5αi(0)(1 + cos(πt/ti)) (1)

We experiment with varying two aspects of this strategy. First, we consider scaling the initial layer-
wise learning rate to be αi(0) = α/ti, where α is the base learning rate (and the learning rate of the
final layer). This scaling, shown in Figure 1 (b), causes each layer’s learning curve to integrate to
the same value, meaning that each layer travels the same distance in the weight space (modulo its
observed gradients and weight dimension) despite the reduced number of steps taken.

Second, we vary the strategy for the how t0 relates to the tis of the remaining layers. The simple
version we explore takes the ti values determined by the linear scheduling rule, and cubes them
with ti(cubed) = t3i(linear), as shown in Figure 1 (c) and (d). This gives more priority (in terms of
training time) to later layers than does the linear schedule. As with the linear schedule, we consider
an "unscaled" variant where the αi values are identical, and a "scaled" variant where the αi values
are scaled based on the cubed ti values. Throughout this paper, we refer to tis with respect to their
uncubed values, such that such that a user selected t0 = 0.5 results in a cubed t0 = 0.125.

FreezeOut adds two user decisions–the choice of t0 and the choice of FreezeOut strategy–to the
standard choices of initial learning rate and number of training iterations. In the following section, we
empirically investigate the relative merit of each of the four strategies, and provide recommendations
for a default configuration, reducing the need for user-tuning of the hyperparameters. FreezeOut is
easy to implement in a dynamic graph framework, requiring approximately 15 unique lines of code
in PyTorch [8].

2



(a) CIFAR-100 (b) CIFAR-10

Figure 2: FreezeOut results for k=12, L=76 DenseNets on CIFAR-100 for 100 epochs. Shaded areas
represent one standard deviation from the mean across 2-5 training runs.

3 Experiments

We modify publicly available PyTorch [8] implementations of DenseNets [5]1, Wide ResNets [14]2,
and VGG [10] and test each of the four scheduling strategies across a wide range of t0 values on
CIFAR-100 and CIFAR-10.

3.1 DenseNet Experiments

Unless otherwise noted, all DenseNet experiments were performed using DenseNet-BC models with
a growth rate of 12 and a depth of 76. We make use of standard data augmentation, train using
SGD with Nesterov Momentum [12] and report results on the test set after training is completed.
We compare achieved speedups (in terms of observed wall clock time relative to a non-FreezeOut
baseline) to performance on the test set, and are primarily interested in the accuracy reduction incurred
for a given reduction in training time.

For the speedups presented here, we use the values attained by running each test sweep in a controlled
environment, on a GTX1080Ti with no other programs running. The actual speedups we observe
in practice are slightly different, as we run the experiments on shared servers, with various types of
GPUs, and with many other programs also running.

We found that a quick back-of the envelope calculation based on the reduction in operations accurately
estimates the obtained speedups. Given ci, the computational cost for the forward pass through each
convolutional layer, and noting that the cost of a full forward-backward pass through that layer is 2ci,
we calculate the baseline computational cost as the sum of each layer’s cost:

C = Σ(2ci × nitr) (2)
with nitr the total number of training iterations. The compute cost for training with FreezeOut is:

Cf = Σ((1 + ti) × ci × nitr) (3)

and the approximate relative speedup is simply the ratio 1 − Cf/C. We found that this accurately
estimates speedup for cubic scheduling, but underestimates the speedups (e.g. the actual speedup
is greater than the calculation gives) for linear scheduling; multiplying the predicted speedup by a
correction factor of 1.3 resolves this almost entirely. This estimate neglects computational overhead
and the cost of other operations (nonlinearities and BatchNorm), but this seems to be offset by the
fact that a frozen layer’s BatchNorm costs are reduced (no longer having to calculate means and
variances), and we find that this is generally a reliable estimate of the achieved speedups for a given
setting.

Our most-investigated setup is shown in Figure 2(a), where we train on CIFAR-100 for 100 epochs
and repeat each experimental setting 2 to 5 times. We also train for a single pass on CIFAR-10 for
100 epochs (Figure 2(b)).

1https://github.com/bamos/densenet.pytorch
2https://github.com/xternalz/WideResNet-pytorch

3



We observe a clear speedup versus accuracy tradeoff. For every strategy, we observe a speedup of up
to 20%, with a maximum relative 3% increase in test error. Lower speedup levels perform better and
occasionally outperform the baseline, though given the inherent level of non-determinism in training
a network, we consider this margin insignificant.

Whether this tradeoff is acceptable is up to the user. If one is prototyping many different designs
and simply wants to observe how they rank relative to one another, then employing higher levels of
FreezeOut may be tenable. If, however, one has set one’s network design and hyperparameters and
simply wants to maximize performance on a test set, then a reduction in training time is likely of no
value, and FreezeOut is not a desirable technique to use.

Based on these experiments, we recommend a default strategy of cubic scheduling with learning rate
scaling, using a t0 value of 0.8 before cubing (so t0 = 0.5120) for maximizing speed while remaining
within an envelope of 3% relative error. As a close alternative, we suggest linear scheduling without
learning rate scaling, using t0 = 0.5. The user is, of course, free to select parameters to fit a particular
point on the design curve.

3.2 Wide ResNet experiments

(a) WRN40-4 (b) VGG-16

Figure 3: FreezeOut results for WRN40-4 and VGG on CIFAR-100. Shaded areas represent one
standard deviation from the mean across 3 training runs for Cubic Scaled and 4 training runs for
Linear Unscaled.

We next investigate the feasibility of FreezeOut for use in Residual architectures [3]. We train Wide
ResNets [14] with depth of 40 and widening factor of 4, and compare our two recommended strategies
against a no-FreezeOut baseline. We vary the number of epochs for which we train, and investigate
how FreezeOut performs against a baseline of simply training for fewer epochs (e.g. a network trained
with FreezeOut for 100 epochs has approximately the same training time as a network trained without
FreezeOut for 80 epochs). The results of this investigation are shown in Figure 3(a). FreezeOut
appears to be better suited to Wide ResNets than DenseNets, achieving higher accuracy even when
trained for the same number of epochs (the final point on the Cubic Scaled curve and the final point
on the Baseline curve were both trained for the same number of iterations).

3.3 VGG Experiments

Finally, we investigate the use of FreezeOut on an architecture without skip connections. We employ a
variant of the VGG-16 [10] architecture with Batch Normalization [6], no Dropout [11], and 512 units
in each of the fully connected layers rather than 4096. We perform a more limited set of experiments
using the Linear Unscaled strategy against a baseline without FreezeOut, as shown in Figure 3(b).
FreezeOut appears to be less well-suited for use in VGG, suggesting that skip connections (either
dense or residual) may be an important element enabling FreezeOut to work for the other architectures
we investigate.

4 Conclusion

In this extended abstract, we presented FreezeOut, a simple technique to accelerate neural network
training by progressively freezing hidden layers.

4



References
[1] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise training of deep

networks. In NIPS, 2007.

[2] X. Gastaldi. Shake-shake regularization of 3-branch residual networks. ICLR 2017 Workshop,
2017.

[3] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual networks. In ECCV
2016.

[4] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger. Deep networks with stochastic
depth. In ECCV 2016.

[5] G. Huang, Z. Liu, K.Q. Weinberger, and L. van der Maaten. Densely connected convolutional
networks. In CVPR 2017, 2017.

[6] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In ICML 2015.

[7] I. Loshchilov and F. Hutter. Sgdr: Stochastic gradient descent with warm restarts. In ICLR
2017, 2017.

[8] A. Paszke, S. Gross, and S. Chintala. Pytorch. github.com/pytorch/pytorch, 2017.

[9] M. Raghu, J. Gilmer, J. Yosinski, and J. Sohl-Dickstein. Svcca: Singular vector canonical
correlation analysis for deep understanding and improvement. In NIPS 2017, 2017.

[10] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. In ICLR 2015.

[11] N. Srivastava, G.E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Improving neural
networks by preventing co-adaptation of feature detectors. arXiv Preprint arXiv: 1207.0580,
2012.

[12] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of initialization and
momentum in deep learning. In ICML 2013.

[13] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked denoising
autoencoders: Learning useful representations in a deep network with a local denoising criterion.
In JMLR 2010.

[14] S. Zagoruyko and N. Komodakis. Wide residual networks. arXiv Preprint arXiv: 1605.07146,
2016.

5


	Introduction
	FreezeOut
	Experiments
	DenseNet Experiments
	Wide ResNet experiments
	VGG Experiments

	Conclusion

