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Abstract

Variety of machine learning problems can be formulated as an optimization task for some
(surrogate) loss function. Calculation of loss function can be viewed in terms of stochastic
computation graphs (SCG). We use this formalism to analyze a problem of optimization
of famous sequence-to-sequence model with attention and propose reformulation of the
task. Examples are given for machine translation (MT). Our work provides a unified view
on different optimization approaches for sequence-to-sequence models and could help
researchers in developing new network architectures with embedded stochastic nodes.

1 Introduction

Stochastic computation graph is a directed acyclic graph which includes both deterministic nodes and condi-
tional probability distributions [Schulman et al., 2015]. Leaves of the computation graph are cost nodes whose
sum can be attributed to total loss function of a machine learning model. By taking the expectation of sum of
cost nodes w.r.t. random variables we receive expected loss. Having defined loss function as mathematical
expectation of costs calculated by SCG, we can view losses for many seemingly different problems in a
uniform way:

L(x, ytrue, θ, θ
′) = Ez∼p(z;θ)

∑
c∈C

c(x, ytrue, z, θ
′) (1)

Here x are inputs, ytrue are corresponding ground-truth outputs, z are random variables with probability
distributions parameterized by θ, θ′ are other parameters of a model. C is a set of cost nodes, c. We refer
reader to the seminal article [Schulman et al., 2015] where authors provide examples of such reformulation
for reinforcement learning (RL) problem setup and generative models.

Once we casted loss function as an expectation of costs calculated by SCG, we need to calculate its derivatives
in order to use effective gradient-based approaches for optimization. Given that parameters of the model
may be included in both probability distributions and deterministic non-linear transformations, the task of
calculating the gradient may become problematic:

1. Closed analytical formula for gradient usually cannot be derived, and even formulae that include
expectations are cumbersome.

2. If computation of gradient involves taking integrals numerically, samples often show large variance.

As for the first problem, there is a general formula [Schulman et al., 2015] which can be considered as a
generalization of the well-known REINFORCE rule [Williams, 1992] and the usual backpropagation algorithm
for deterministic computation graphs. It provides a straightforward way to obtain an unbiased estimate of
the gradient of loss function by approximating expectations with Monte-Carlo samples. This is where the
second problem comes to play. Naive numerical calculation of gradient may fail because of large variance of
samples and some additional tricks are needed to make the procedure more sample-efficient: control variates
[Greensmith et al., 2004], common random numbers etc.

Recently, reparameterization trick for continuous distributions [Kingma and Welling, 2013] has become popu-
lar for the same purposes and a similar procedure [Jang et al., 2016, Maddison et al., 2016] was developed for
discrete distributions. In the latter case, we introduce bias in gradient estimate but decrease the variance.
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Stochastic computation graphs provide a convenient framework for the analysis of machine learning models.
It also encourages us to use general variance reduction techniques for Monte-Carlo integration, not restricting
ourselves to some "practices" which are common in fields where similar problems occur (such as baselines for
lowering variance of score function estimator in RL).

The contributions of this work are as follows:

1. Re-formulation of an example NLP model using the SCG formalism, thus describing different
optimization approaches in common terms.

2. Analysis of the existing training procedures for this model using the SCG formalism.
3. Testing different variance reduction techniques for the efficient optimization of the model.

2 Sequence-to-sequence model

Sequence-to-sequence architectures (seq2seq) are a wide class of models that produce a sequence of tokens
from an arbitrary input. Some examples of their applications are machine translation [Sutskever et al., 2014],
summarization [Rush et al., 2015].

Widely used approach to training of seq2seq models is maximizing the likelihood of each successive target
token conditioned on the input sequence and the history of target tokens. This approach is known as teacher
forcing [Williams and Zipser, 1989] and is illustrated on Figure 1. Although proved to be effective in practice,
at test time it does not give model the access to correct tokens, but only to its own predictions. Hence inference
procedure is different at training and test time. This leads to two major issues [Wiseman and Rush, 2016]:

1. Exposure bias. Model is not exposed to its own outputs during training.
2. Loss-evaluation mismatch. During training we optimize a differentiable metric, but measure quality

with another metric (such as BLEU [Papineni et al., 2002]).

Figure 1: An example of sequence-to-sequence model with attention. Calculation of cross-entropy loss
function with teacher forcing is shown. <BOS> is a token that denotes start of a sentence. All nodes in the
graph are calculated deterministically and denoted by rounded rectangles.

Several approaches have been developed in order to mitigate these issues.

One is alternating regime of "scheduled sampling" [Bengio et al., 2015] where model can receive either inputs
from target sequences or samples from the output distribution at different training steps randomly. Log
likelihood of correct labels is optimized. This method is developed within supervised learning paradigm (cases
A and B in Figure 2.

Second approach is to consider sampling from output distribution as an agent’s action, thus considering the
task in RL paradigm (case C in Figure 2). Because of that, direct optimization of target non-differentiable
metric can be performed using RL techniques [Paulus et al., 2017].

In our opinion, there is nothing conceptually different between these approaches. They can be unified if we
define loss function of seq2seq model in stochastic graph formalism as in Figure 2. Then the expectation
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in equation 1 corresponds to sampled words from output distributions. We can consider these intermediate
outputs as latent variables which are marginalized to get loss function depending only on external data and
parameters of a model. Given general formula [Schulman et al., 2015] for an unbiased estimate of gradient of
corresponding loss, we now focus on its practical (i.e. data) efficiency.

Figure 2: Different approaches to optimization of seq2seq model. For brevity, only decoder part is shown,
encoder is the same as on Figure 1. Circles denote stochastic nodes where sampling is performed. A. Usual
teacher forcing approach. B. Outputs from previous step are sampled and fed at the next time step. C. Same as
in case B, but a non-differentiable metric is being optimized.

3 Results and discussion

We optimized all three losses shown in Figure 2 in common SCG framework for MT task1. The results are
given in Table 1 in the form "mean ± std". We performed 5 runs for each experiment in order to compute
standard deviation. For the approach B ("feed samples"), when outputs from the previous step are sampled
and fed at the next time step, we tested three different approaches to optimization. For all experiments we
used early stopping (computation stops when loss on validation set stop decreasing, approximately between
10000-th and 20000-th batch), except for direct BLEU optimization, when we stopped after 100000 batches,
not waiting for model to start overfitting. For direct optimization of BLEU (approach C on Figure 2) control
variates as a variance reduction technique were implemented.

The choice of model architecture was motivated by a compromise between simplicity (to allow fast experiments)
and representativity (to ensure results are transferable). Same model as in [Wiseman and Rush, 2016] was
used: single-layer bidirectional LSTM encoder and single-layer LSTM decoder with multiplicative attention
mechanism [Luong et al., 2015]. Hidden dimension of LSTM cells is 256 and pretrained fasttext embed-
dings [Bojanowski et al., 2016] of size 300 were used for initialization. We used Adam [Kingma and Ba, 2014]
with learning rate 0.001 when optimizing cross-entropy, and with learning rate 0.0001 when directly optimiz-
ing BLEU. We trained our models on dataset is IWSLT’14 dataset [Cettolo et al., 2014] of German-English
sentence pairs.

Let us now discuss differences between training procedures for loss functions shown in Figure 2. Teacher
forcing case is trivial: there are no non-differentiable or stochastic nodes in the graph, so usual backpropagation
algorithm works fine.

If we introduce additional stochastic nodes in the graph, then in order to get an unbiased estimate for the
gradient of loss function we need to backpropagate through stochastic nodes; the gradient consists of two
terms in this case: the first one that flows through by all the paths in the graph that go through stochastic nodes,
and the second one, that is just usual backpropagation term. We do not reproduce all the formulae here, they
can be found in [Schulman et al., 2015]. Hereinafter we refer to the sum of these two terms as "full" gradient,
and just the second term is referred to as "naive" gradient.

For scheduled sampling, authors of [Bengio et al., 2015] used naive gradient to train a model. It resulted
in a biased estimate of gradient. One of the stimulating questions for the present work was to clarify how
optimization process would change once we start using unbiased gradient estimates (but probably with larger
variance).

1Our code is available on GitHub: https://github.com/deepmipt/seq2seq_scg

3

https://github.com/deepmipt/seq2seq_scg


Table 1: Experimental results for MT. Either differentiable loss function Cross-Entropy (CE) was used or we
directly optimized the target BLEU metric (last line).

CE loss BLEU

train eval (best) train eval (best)

Teacher-forcing (Figure 2A, CE opt.) 5.96± 0.03 6.44± 0.08 31.8± 4.9 19.6± 3.6

Feed samples (Figure 2B, CE opt.):
naive gradient 3.41± 0.17 4.20± 0.10 20.1± 2.7 9.8± 1.3
full gradient, control variates 3.45± 0.23 4.24± 0.08 12.4± 1.7 8.0± 0.7
full gradient, Gumbel reparam. 3.43± 0.16 4.22± 0.07 16.8± 1.5 8.7± 0.3

full gradient (Figure 2C, direct BLEU opt.) - - 24.6± 0.1 22.0± 0.2

Introducing stochastic nodes allows us to optimize non-differentiable metrics, because in this case the
expression for the full gradient does not include derivatives of cost nodes ("score function" estimator
[Schulman et al., 2015]). As an illustrative example, we do not need a model of environment when us-
ing policy gradient theorem [Sutton et al., 2000] in RL just because of this. This is why one appeals to RL
optimization procedures, once a non-differentiable metric occurs. As a price to pay, this estimator shows large
variance [Greensmith et al., 2004]. In our opinion, the whole RL machinery seems to be a bit redundant here,
because we do not actually need to define of "agent", "environment" (or Markov decision process) here. We
can just consider an arbitrary graph with stochastic nodes and optimize a corresponding loss function.

To summarize, there are three most common approaches to optimize loss functions represented as SCG:

1. Naive gradient (ignore paths through stochastic nodes): applicable to cases A and B on Figure 2.
Cannot be applied to case C, because loss function is non-differentiable.

2. Full gradient: universal, for case A in Figure 2 reduces to naive gradient.
3. Reparametrization trick: case B in Figure 2. Same as naive gradient, cannot be applied to case C.

The latter approach can introduce bias in gradient estimate (for example, if we use reparameterization for
discrete distributions [Jang et al., 2016]), but usually greatly reduces variance. In this case we actually change
computation graph, but do not change expected loss.

4 Conclusions

SCG formalism provides a convenient framework for the analysis of machine learning architectures by
showing assumptions made in corresponding approaches explicitly. Also, adding new stochastic nodes (i.e.
hard attention mechanism [Xu et al., 2015] instead of soft one) does not cause change in training paradigm
from "supervised learning" to "reinforcement learning". SCG formalism allows to get rid of seemingly different
approaches to the same task and review it from a common perspective.

Using sampling can be viewed as regularization technique: that is, comparing teacher-forcing and sampling
approaches, we observed that the latter approach results in smaller margin between metrics on train and
validation sets.

Using full gradient instead of naive one didn’t provide any advancement in evaluation metrics in our experi-
ments. This is likely due to high variance of gradient estimate. One way to mitigate it is to use better control
variate (a promising example: [Tucker et al., 2017]), that remains a subject for future work.
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