
A unified framework for
structured low-rank matrix learning

Pratik Jawanpuria jawanpur@amazon.com
Amazon.com
Bamdev Mishra bamdevm@amazon.com
Amazon.com

Abstract

We propose a novel optimization framework for learning a low-rank matrix which is also
constrained to lie in a linear subspace. Exploiting the duality theory, we present a factor-
ization that decouples the low-rank and structural constraints onto separate factors. The
optimization problem is formulated on the Riemannian spectrahedron manifold, where the
Riemannian framework allows to develop computationally efficient conjugate gradient and
trust-region algorithms. Empirically, our algorithms outperform state-of-the-art on various
applications.

1 Introduction

Our focus in this paper is on learning structured low-rank matrices with the formulation

min
W∈Rd×T

1

2
R(W) + CL(W,Y), subject to W ∈ D, (1)

where Y ∈ Rd×T is a given matrix, L : Rd×T × Rd×T → R is a loss function, R is a low-rank promoting
regularizer and C > 0 is the cost parameter. D is the linear subspace corresponding to structural constraints,
D := {W : A(W) = 0}, where A : Rd×T → Rn is a linear map.

Low-rank matrices are commonly learned for matrix completion [1], multivariate regression [2], etc. In addition
to the low-rank constraint, other structural constraints may exist, e.g., entry-wise non-negative/bounded
constraints [3]. Several linear dynamical models require learning a low-rank Hankel matrix [4, 5]. A Hankel
matrix has all its anti-diagonal entries to be the same. In robust matrix completion [6], the sparse structure is
modeled effectively by the `1-loss function [7, 8].

We propose a unified optimization framework for (1), which is suitable for a variety of loss functions L,
structural constraints D, and is scalable. Using the duality theory, we present a novel modeling of structured
low-rank matrix W as W = UU>(Z+A), where U ∈ Rd×r and Z,A ∈ Rd×T . Our factorization naturally
decouples the low-rank and structural constraints on W: the low-rank is enforced with U, the structural
constraint is modeled by A, and the loss specific structure is modeled by Z. The separation of constraints onto
separate factors makes the optimization conceptually simpler.

Our approach leads to an optimization problem on the Riemannian spectrahedron manifold. We exploit the
Riemannian framework to develop computationally efficient conjugate gradient and trust-region algorithms.
The proposed algorithms outperform state-of-the-art in standard, robust and non-negative matrix completion
problems as well as low-rank Hankel matrix learning applications.

1.1 Related work

Matrix completion: [9, 10] proposes singular value thresholding and active learning algorithms for (1) with
R(W) = ‖W‖∗ (trace-norm regularizer) and without the constraint W ∈ D. Fixed-rank approaches [11, 12,
13, 14, 15] learn a low-rank matrix by fixing the rank explicitly.

Robust matrix completion: [7] proposes to use `1-loss as the loss function along with the low-rank constraint
on W for the robust matrix completion problem. [8] employs the pseudo-Huber loss as a proxy for the
non-smooth `1-loss and develop a large-scale Riemannian conjugate gradient algorithm.
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Non-negative matrix completion: Certain recommender system and image completion based applications
desire matrix completion with non-negative entries [3]. Recently, [3] proposes a large-scale alternating
direction method of multipliers (ADMM) algorithm.

Hankel matrix learning: [4] uses R(W) = ‖W‖∗ in (1) to learn a low-rank Hankel matrix (enforced by D)
with the ADMM approaches. [16] also employs the ‖W‖∗ regularization, but relax the Hankel constraints
with a corresponding penalty term in the objective function. [5] learns a Hankel matrix by fixing the rank a
priori and strictly enforcing the structural constraints.

2 Novel formulation for structured low-rank matrix learning

A few notations first. The set of d× d positive semi-definite matrices with unit trace is denoted by Pd. The
pseudoinverse of a matrix Θ is represented as Θ† and range(Θ) = {Θz : z ∈ Rd}.
We study a variant of problem (1) in which we employ a variational characterization of R(W) = ‖W‖2∗ [17,
Theorem 4.1]: ‖W‖2∗ = minΘ∈Pd

〈
Θ†W,W

〉
, subject to range(W) ⊆ range(Θ). Hence, our the propose

primal formulation for structured low-rank matrix learning is as follows:

min
Θ∈Pd, range(W)⊆range(Θ)

min
W∈Rd×T

1

2

〈
Θ†W,W

〉
+ CL(Y,W), subject to A(W) = 0. (2)

The matrix Θ learned in (2) is low-rank because Θ ∈ Pd. In addition, it can be proved that the rank of Θ and
W are equal at optimality. Hence, the low-rank constraint on W is transferred to Θ in (2). In the following,
we propose a dual formulation of (2) that provides further insights into the optimal solution of (2) and is
suitable in large-scale structured matrix learning.

Theorem 1 Let L∗ be the Fenchel conjugate function of the loss: L : Rd×T → R, v 7→ L(Y, v) and let
A∗ : Rn → Rd×T be the adjoint of A. The dual problem of (2) with respect to W is

min
Θ∈Pd

max
Z∈Rd×T , s∈Rn

−CL∗(−Z/C)− 〈Θ(Z +A∗(s)),Z +A∗(s)〉 /2. (3)

If {Θ̄, Z̄, s̄, } is an optimal solution of (3), the optimal solution W̄ of (2) is W̄ = Θ̄(Z̄ +A∗(s̄)).

From the above theorem, we can observe that in an optimal W̄, the low-rank constraint is enforced through
Θ̄, the loss-specific structure (encoded in L∗) is enforced through Z̄, and the structural constraint is enforced
through A∗(s̄). Overall, such a decoupling of constraints onto separate variables facilitates the use of simpler
optimization techniques.

An algorithm for (3) need not produce intermediate iterates with low-rank Θ matrix. For large-scale optimiza-
tion, this observation motivates a fixed-rank parameterization of Θ as discussed below.

We model Θ ∈ Pd as a rank r matrix as follows: Θ = UU>, where U ∈ Rd×r and ‖U‖F = 1. The proposed
modeling has two-fold benefits in large-scale problems, where r � min{d, T} is a common setting. First,
the Θ ∈ Pd constraint is always satisfied, thereby saving the costly projection operations to ensure Θ ∈ Pd.
Second, the dimension of the search space of (3) with Θ = UU> is rd − 1 − r(r − 1)/2, which is much
lower than the dimension (d(d+ 1)/2− 1) of Θ ∈ Pd.

Instead of solving a minimax objective directly, as in (3), we solve a minimization problem after incorporating
the Θ = UU> parameterization as follows:

min
U∈Rd×r,‖U‖F =1

g(U), where (4)

g(U) := max
Z∈Rd×T ,s∈Rn

− CL∗(−Z/C)−
∥∥U>(Z +A∗(s))

∥∥2

F
/2. (5)

An important outcome of the above modeling is that the expression for the gradient of g(U) in (4) is
independent of the application at hand (refer Lemma 1). The application specific information in (5) is encoded
only through the values of variables Z and s, which are used to compute the gradient of g(U). This allows
the development of a unified optimization framework for various low-rank matrix learning problems. Finally,
the matrix W is learned as UU>(Z +A∗(s)). The following theorem provides the duality gap optimality
criterion of any feasible solution Û of (4).
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Algorithm 1 Proposed first- and second-order algorithms for (4)
Input: Y, rank r, regularization parameter C.
Initialize U ∈ Sd

r .
repeat

1: Solve for {Z, s} by computing g(U) in (5).
2: Compute∇Ug(U) as given in Lemma 1.
3: Riemannian CG step: compute a conjugate
direction V and step size α, using of∇Ug(U).

3: Riemannian TR step: compute a search direction V that minimizes the trust region
sub-problem, using∇Ug(U) and its directional derivative. Step size α = 1.

4: Update: U = (U + αV)/ ‖U + αV‖F (retraction step)
until convergence
Output: {U,Z, s} and W = UU>(Z +A∗(s)).

Theorem 2 Let Û be a feasible solution of (4), {Ẑ, ŝ} be an optimal solution of the convex problem (5) at Û,
and σ1 be the maximum singular of Ẑ +A∗(ŝ). A candidate solution for (3) is {Θ̂, Ẑ, ŝ}, where Θ̂ = ÛÛ>.

The associated duality gap (∆) is given by ∆ = (σ2
1 −

∥∥∥Û>(Ẑ +A∗(ŝ))
∥∥∥2

)/2.

The cost of computing σ1 is computationally cheap as it requires only a few power iteration updates.

3 Optimization on spectrahedron manifold

The matrix U lies in, what is popularly known as, the spectrahedron manifold Sdr := {U ∈ Rd×r : ‖U‖F =
1}, which has the structure of a compact Riemannian quotient manifold [2]. The quotient structure takes the
rotational invariance of the constraint ‖U‖F = 1 into account. The Riemannian optimization framework
generalizes various classical first- and second-order Euclidean algorithms to manifolds and provide concrete
convergence guarantees [18, 2, 19].

We implement the Riemannian conjugate gradient (CG) and trust-region (TR) algorithms for (4). These require
the notions of the Riemannian gradient (first-order derivative of g(U) on the manifold), Riemannian Hessian
along a search direction (the covariant derivative of the Riemannian gradient along a tangential direction
on the manifold), and the retraction operator (that ensures that we always stay on the manifold). The above
require computations of the Euclidean gradient (∇Ug(U)) and the directional derivative of this gradient along
a given direction, expressed in the following lemma.

Lemma 1 Let {Ẑ, ŝ} be an optimal solution of the convex problem (5) at U. Then,

∇Ug(U) = −(Ẑ +A∗(ŝ))(Ẑ +A∗(ŝ))>U.
Let D∇Ug(U)[V] denote the directional derivative of the gradient ∇Ug(U) along V ∈ Rd×r. Let {Ż, ṡ}
denote the directional derivative of {Z, s} along V at {Ẑ, ŝ}. Then,

D∇Ug(U)[V] = (Ż +A∗(ṡ))(Ẑ +A∗(ŝ))>U + (Ẑ +A∗(ŝ))
(

(Ż +A∗(ṡ))>U− (Ẑ +A∗(ŝ))>V
)
.

Riemannian CG algorithm: It computes the Riemannian conjugate gradient direction by employing∇Ug(U)
(Lemma 1). Armijo line search is employed to compute the step-size.

Riemannian TR algorithm: It solves a Riemannian trust-region sub-problem (in a neighborhood) at every
iteration. It makes use of∇Ug(U) and its directional derivative D∇Ug(U)[V] (Lemma 1).

Overall algorithm: Algorithm 1 summarizes the proposed first- and second-order algorithms for solving (4).
Our approach can be readily extended to a stochastic setting, e.g., when A(W) = 0 imposes column-wise
constraints and the columns are streamed one by one.

Computational complexity: The spectrahedron manifold operations cost O(dr + r3). The additional
computational cost of solving (5) for specific problems is as follows: (a) Matrix completion: (5) is a
least-squares problem which can be solved in closed form in O(|Ωr2|); (b) Robust matrix completion: (5) can
be solved using dual co-ordinate descent algorithm [20] in O(|Ω|r2); (c) Non-negative matrix completion: (5)
can be solved using the non-negative least-squares algorithm [21] in O(dTr + |Ω|r2); and (d) Hankel matrix
learning: (5) can be solved using preconditioned gradient descent algorithm in O(dTr).

4 Experiments

We perform experiments on four different applications.

3



10
2

10
3

10
4

Time (in seconds)

0.8

0.9

1

1.1

1.2

1.3

T
e

s
t 

R
M

S
E

Proposed-cg-non-neg

BMC-ADMM

10
2

10
3

10
4

Time (in seconds)

0.8

0.9

1

1.1

1.2

1.3

T
e

s
t 

R
M

S
E

Proposed-cg-non-neg

BMC-ADMM

0 50 100 150

Iterations

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

R
M

S
E

 o
n

 t
h

e
 t

ru
e

 d
a

ta

Proposed-cg-hk

DADM

SLRA

GCG

0 20 40 60 80 100 120

Iterations

10
-3

10
-2

10
-1

R
M

S
E

 o
n

 t
h

e
 t

ru
e

 d
a

ta

Proposed-cg-hk
DADM
SLRA
GCG

(a) MovieLens10m (b) MovieLens20m (c) Small data set (d) Large data set

Figure 1: (a)&(b) Evolution of test RMSE on non-negative matrix completion problems. (c)&(d) Performance
on different stochastic system realization problems — learning low-rank Hankel matrices.
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Figure 2: Evolution of test RMSE on the Netflix data set. (a)&(b) Comparison of matrix completion algorithms;
(c) Comparison of robust matrix completion algorithms.

Non-negative matrix completion: We compare our first-order algorithm (Proposed-cg-non-neg) against
BMC-ADMM [3] on MovieLens10m (ML10m) and MovieLens20m (ML20m) datasets. The rank for both
is set as 10. Figures 1(a)&(b) plot the evolution of the test RMSE with training time. Proposed-cg-non-neg
outperform BMC-ADMM and converge to the best test RMSE.

Hankel matrix learning: We compare our first-order algorithm (Proposed-cg-hk) with GCG [16], SLRA [22,
23], and DADM [4]. In small-scale experiment, we follow [4, 16] to generate the data, with d = 21, T = 100,
and r = 10. In large-scale experiment, we follow [22, 23] to generate the data, with d = 1000, T = 10000,
and r = 5. Figure 1(c)&(d) shows the variation of RMSE with respect to true data across iterations for the two
experiments. We observe that our algorithm outperform GCG and DADM, and obtain significantly better true
RMSE than SLRA in the large-scale experiment.

Matrix completion: We compare our first- and second-order algorithms (Proposed-cg-sq and Proposed-tr-sq,
respectively) against several solvers: APGL [9], Active ALT [10], R3MC [14], LMaFit [12], MMBS [24],
RTRMC [11, 25], and PRP [15]. The rank (or maximum rank) for all is set to 10. Figures 2(a)&(b) display the
evolution of test RMSE on the Netflix data set for first- and second-order algorithms, respectively. Proposed-
cg-sq is among the most efficient first-order method and Proposed-tr-sq is the best second-order method.

Robust matrix completion: We develop two first-order robust algorithms: Proposed-cg-ab (with `1-loss),
and Proposed-cg-svr (with ε-SVR loss), and compare against RMC [8]. Figure 2(c) displays the results on the
Netflix data set. We observe that both our algorithms scale effortlessly even with non-smooth loss functions,
with Proposed-cg-svr obtaining the lowest test RMSE.

5 Conclusion

We have proposed a novel factorization for structured low-rank matrix learning problems, which stems from
the application of duality theory and rank-constrained parameterization of positive semi-definite matrices.
This allows to develop a conceptually simpler and unified optimization framework for various applications.
State-of-the-art performance of our algorithms on several applications demonstrate the efficacy of our approach.
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