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Abstract

We present the first efficient and provably consistent estimator for the robust regression
problem. The area of robust learning and optimization has generated a significant amount
of interest in the learning and statistics communities in recent years owing to its applica-
bility in scenarios with corrupted data. In particular, special interest has been devoted to
the problem of robust linear regression where estimators that can tolerate corruption in up
to a constant fraction of the response variables are widely studied. Surprisingly however,
to this date, we are not aware of a polynomial time estimator that offers a consistent es-
timate in the presence of dense, unbounded corruptions. In this work we present such an
estimator, called CRR. This solves an open problem put forward in the work of [2]. Our
consistency analysis requires a novel two-stage proof technique involving a careful analysis
of the stability of ordered lists which may be of independent interest.

1 Introduction

The problem of robust learning involves designing and analyzing learning algorithms that can extract the
underlying model despite dense, possibly malicious, corruptions in the training data provided to the algorithm.
The problem has been studied in a dizzying variety of models and settings ranging from regression [12],
classification [7], dimensionality reduction [3] and matrix completion [6].

In this paper we are interested in the Robust Least Squares Regression (RLSR) problem that finds several
applications to robust methods in face recognition and vision [15, 14], and economics [12]. In this problem,
we are given a set of n covariates in d dimensions, arranged as a data matrix X = [x1, . . . ,xn], and a
response vector y ∈ Rn. However, it is known apriori that a certain number k of these responses cannot
be trusted since they are corrupted. These may correspond to corrupted pixels in visual recognition tasks or
untrustworthy measurements in general sensing tasks.

Using these corrupted data points in any standard least-squares solver, especially when k = O (n), is likely
to yield a poor model with little predictive power. A solution to this is to exclude corrupted points from
consideration. The RLSR problem formalizes this requirement as follows:

(ŵ, Ŝ) = arg min
w∈Rp,S⊂[n]
|S|=n−k

∑
i∈S

(yi − xTi w)2, (1)

This formulation seeks to simultaneously extract the set of uncorrupted points and estimate the least-squares
solutions over those uncorrupted points. Due to the combinatorial nature of the RLSR formulation (1), solving
it directly is challenging and in fact, NP-hard in general [2, 13].

Literature in robust statistics suggests several techniques to solve (1). The most common model assumes a
realizable setting wherein there exists a gold model w∗ that generates the non-corrupted responses. A vector
of corruptions is then introduced to model the corrupted responses i.e.

y = XTw∗ + b∗. (2)

The goal of RLSR is to recover w∗ ∈ Rd, the true model. The vector b∗ ∈ Rn is a k-sparse vector which
takes non-zero values on at most k corrupted samples out of the n total samples, and a zero value elsewhere.
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Paper Breakdown Point Adversary Consistent Technique
Wright & Ma, 2010 [14] α→ 1 Oblivious No L1 regularization

Chen & Dalalyan, 2010 [4] α ≥ Ω (1) Adaptive No Second-order cone program

Chen et al., 2013 [5] α ≥ Ω
(

1√
d

)
Adaptive No Robust thresholding

Nguyen & Tran, 2013 [11] α→ 1 Oblivious No L1 regularization
Bhatia et al., 2015 [2] α ≥ Ω (1) Adaptive No Iterative hard thresholding

This paper α ≥ Ω (1) Oblivious Yes Iterative hard thresholding

Table 1: A comparison of different RLSR algorithms and their properties. CRR is the first efficient RLSR
algorithm to guarantee consistency in the presence of a constant fraction of corruptions.

A more useful, but challenging model is one in which (mostly heteroscedastic and i.i.d.) Gaussian noise is
injected into the responses in addition to the corruptions.

y = XTw∗ + b∗ + ε. (3)

2 Related Works

A string of recent works have looked at the RLSR problem in various settings. To facilitate a comparison
among these, we set the following benchmarks for RLSR algorithms

1. (Breakdown Point) This is the number of corruptions k that an RLSR algorithm can tolerate is a
direct measure of its robustness. The breakdown point k is frequently represented as a fraction α of
the total number of data points i.e. k = α · n.

2. (Adversary Model) RLSR algorithms frequently resort to an adversary model to specify how are the
corruptions introduced into the regression problem. The strictest is the adaptive adversarial model
wherein the adversary is able to view X and w∗ (as well as ε if Gaussian noise is present) before
deciding upon b∗. In contrast, in an oblivious adversarial model the adversary generates a k-sparse
vector in complete ignorance of X and w∗ (and ε).

3. (Consistency) RLSR algorithms that are able to operate in the hybrid noise model with sparse adver-
sarial corruptions as well as dense Gaussian noise are more valuable. An RLSR algorithms is said
to be consistent if, when invoked in the hybrid noise model, the algorithm returns an estimate ŵn

such that limn→∞ E [ŵn −w∗]2 = 0.

In Table 1, we present a summarized view of existing RLSR techniques and their performance vis-a-vis
the benchmarks discussed above. Past work has seen the application of a wide variety of algorithmic tech-
niques to solve this problem, inclding more expensive methods involving L1 regularization (for example
minw,b λw ‖w‖1 + λb ‖b‖1 + ‖X>w + b− y‖22) and second-order cone programs such as [14, 4, 10, 11],
as well as more scalable methods such as the robust thresholding and iterative hard thresholding [5, 2].

An important point of consideration is the breakdown point of these methods. Among those cite in Table 1,
the works of [14] and [10] obtain the best breakdown points that allow a fraction of points to be corrupted that
is arbitrarily close to 1. They require the data to be generated from either an isotropic Gaussian ensemble or
be row-sampled from an incoherent orthogonal matrix. Most results mentioned in the table allow a constant
fraction of points to be corrupted i.e. allow k = α · n corruptions for some fixed constant α > 0. This is still
impressive since it allows a dense subset of data points to be corrupted and yet guarantee recovery. However,
as we shall see below, these results cannot guarantee consistency while allowing allow k = α ·n corruptions.

We note that we use the term dense to refer to the corruptions in our model since they are a constant fraction
of the total available data. Moreover, as we shall see, this constant shall be universal and independent of the
ambient dimensionality d. This terminology is used to contrast against some other works which can tolerate
only o(n) corruptions which is arguably much sparser. For instance, as we shall see below, the work of [11]
can tolerate only o(n/ log n) corruptions if a consistent estimate is expected. The work of [5] also offers a
weak guarantee wherein they are only able to tolerate a 1/

√
d fraction of corruptions. However, [5] allow

corruptions in covariates as well.

However, we note that none of the algorithms listed here are able to guarantee a consistent solution, irrespec-
tive of assumptions on the adversary model. At best, they guarantee ‖w −w∗‖2 ≤ O (σ) when k = Ω (n)
where σ is the standard deviation of the white noise (see Equation 3). Thus, their estimation error is of the
order of the white noise in the system, even if the algorithm is supplied with an infinite amount of data.

2



Algorithm 1 CRR: Consistent Robust Regression

Input: Covariates X = [x1, . . . ,xn], responses y = [y1, . . . , yn]>, corruption index k, tolerance ε
1: b0 ← 0, t← 0,
PX ← X>(XX>)−1X

2: while
∥∥bt − bt−1

∥∥
2
> ε do

3: bt+1 ← HTk(PXbt + (I − PX)y)
4: t← t+ 1
5: end while
6: return wt ← (XX>)−1X(y − bt)

3 Our Contributions

In this paper, we remedy the above problem by using a simple and scalable iterative hard-thresholding algo-
rithm called CRR along with a novel two-stage proof technique. Given n covariates that form a Gaussian
ensemble, our method in time poly(n, d), outputs an estimate ŵn s.t. ‖ŵn − w∗‖2 → 0 as n → ∞
(see Theorem 1 for a precise statement). In fact, our method guarantees a nearly optimal error rate of

‖ŵn −w∗‖2 ≤ σ
√

d
n . It is noteworthy that CRR can tolerate a constant fraction of corruptions i.e. tol-

erate k = α · n corruptions for some fixed α > 0.

We note that although hard thresholding techniques have been applied to the RLSR problem earlier [2, 5],
none of those methods are able to guarantee a consistent solution to the problem. Our results hold in the
setting where a constant fraction of the responses are corrupted by an oblivious adversary (i.e. the one
which corrupts observations without information of the data points themselves). Our algorithm runs in time
Õ
(
d3 + nd

)
, where d is the dimensionality of the data. Moreover, as we shall see, our technique makes more

efficient use of data than previous hard thresholding methods such as TORRENT [2].

To the best of our knowledge, this is the first efficient and consistent estimator for the RLSR problem in
the challenging setting where a constant fraction of the responses may be corrupted in the presence of dense
noise. We would like to note that the problem of consistent robust regression is especially challenging because
without the assumption of an oblivious adversary, consistent estimation with a constant fraction of corruptions
(even for an arbitrarily small constant) is impossible [1].

However, by crucially using the restriction of obliviousness on the adversary along with a novel proof tech-
nique, we are able to provide a consistent estimator for RLSR with optimal (up to constants) statistical and
computational complexity.

4 Problem Formulation

We are given n data points X = [x1, . . . ,xn] ∈ Rd×n, where xi ∈ Rd are the covariates and, for some true
model w∗ ∈ Rd, the vector of responses y ∈ Rn is generated

y = X>w∗ + b∗ + ε, (4)

The responses suffer two kinds of perturbations – dense white noise εi ∼ N (0, σ2) that is chosen in an i.i.d.
fashion independently of the data X and the model w∗, and adversarial corruptions in the form of b∗. We
assume that b∗ is a k∗-sparse vector albeit one with potentially unbounded entries. The constant k∗ will be
called the corruption index of the problem. We assume the oblivious adversary model where b∗ is chosen
independently of X,w∗ and ε.

Although there exist works that operate under a fully adaptive adversary [2, 4], none of these works are able
to give a consistent estimate. We also note that existing works are unable to give consistent estimates even in
the oblivious adversary model.

5 CRR: A Hard Thresholding Approach to Consistent Robust Regression

We now present a consistent method CRR for the RLSR problem. CRR takes a different approach to the
problem than previous works. Instead of attempting to exclude data points deemed unclean (as done by the
TORRENT algorithm of [2]), CRR focuses on correcting the errors.
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To motivate the CRR algorithm, we start with the RLSR formulation
minw∈Rp,‖b‖0≤k∗

1
2

∥∥X>w − (y − b)
∥∥2

2
, and realize that given any estimate b̂ of the corruption vec-

tor, the optimal model with respect to this estimate is given by the expression ŵ = (XX>)−1X(y − b̂).
Plugging this expression for ŵ into the formulation allows us to reformulate the RLSR problem.

min
‖b‖0≤k∗

f(b) =
1

2
‖(I − PX)(y − b)‖22 (5)

where PX = X>(XX>)−1X . This greatly simplifies the problem by casting it as a sparse parameter
estimation problem instead of a data subset selection problem (as done by TORRENT). CRR directly opti-
mizes (5) by using a form of iterative hard thresholding. At each step, CRR performs the following update:
bt+1 = HTk(bt−∇f(bt)), where k is a parameter for CRR. We note that CRR functions with a fixed, unit
step length, which is convenient in practice as it avoids step length tuning, something most IHT algorithms
[8, 9] require.

6 Consistency Guarantees for CRR

Theorem 1. Let xi ∈ Rd, 1 ≤ i ≤ n be generated i.i.d. from a Gaussian distribution, let yi’s be generated
using (4) for a fixed w∗, and let σ2 be the noise variance. Also let the number of corruptions k∗ be s.t.
2k∗ ≤ k ≤ n/10000. Then, with probability at least 1− δ, afterO

(
log
‖b∗‖2
σk+ε + log n

d

)
steps, CRR ensures

that ‖wt −w∗‖2 ≤ ε+O
(

σ√
λmin(Σ)

√
d
n log nd

δ

)
.

The above result establishes consistency of the CRR method with an error rate of Õ(σ
√
d/n) that is known

to be statistically optimal. It is notable that this optimal rate is being ensured in the presence of gross and
unbounded outliers.

For our analysis, we will divide CRR’s execution into two phases – a coarse convergence phase and a fine
convergence phase. CRR will enjoy a linear rate of convergence in both phases. However, the coarse conver-
gence analysis will only ensure ‖wt −w∗‖2 = O (σ). The fine convergence phase will then use a much
more careful analysis of the algorithm to show that in at most O (log n) more iterations, CRR ensures
‖wt −w∗‖2 = Õ(σ

√
d/n), thus establishing consistency of the method.

Coarse convergence: Here we establish a result that guarantees that after a certain number of steps T0, CRR
identifies the corruption vector with a relatively high accuracy and consequently ensure that

∥∥wT0 −w∗
∥∥

2
≤

O (σ). We utilize the notions of Subset Strong Convexity and Subset Strong Smoothness in our proofs similar
to [2].
Lemma 2. For any data matrix X that satisfies the SSC and SSS properties such that 2Λk+k∗

λn
< 1, CRR,

when executed with a parameter k ≥ k∗, ensures that after T0 = O
(

log
‖b∗‖2
e0+ε

)
steps,

∥∥bT0 − b∗
∥∥

2
≤

3e0 + ε, where e0 = O
(
σ
√

(k + k∗) log n
δ(k+k∗)

)
for standard Gaussian designs.

Fine convergence: We now show that CRR progresses further at a linear rate to achieve a consistent solution.
In Lemma 3, we show that ‖X(bt − b∗)‖ has a linear decrease for every iteration t > T0 along with a term
which is Õ(

√
dn).

Lemma 3. Let X = [x1,x2, . . . ,xn] be a data matrix consisting of i.i.d. standard normal vectors i.e xi ∼
N (0, Id×d), and ε ∼ N (0, σ2 ·In×n) be a standard normal vector of white noise values drawn independently
of X . For any λ ∈ Rd such that ‖λ‖2 ≤

σ
100 , define bnew = HTk(X>λ + ε + b∗), znew = bnew − b∗ and

λnew = (XXT )−1Xznew, where k ≥ 2k∗, |supp(b∗)| ≤ k∗, k∗ ≤ n/1000, and d ≤ n/1000. Then, with
probability at least 1− 1/n5, for every λ s.t. ‖λ‖2 ≤

σ
100 , we have

‖Xznew‖2 ≤ .9n‖λ‖+ 100σ
√
d · n log2 n,

‖λnew‖2 ≤ .91‖λ‖+ 110σ

√
d

n
log2 n.

Putting all these results together establishes Theorem 1.

For full proofs, convergence analyses of the other variants, and experimental results, see the long version of
the paper (Full Version).
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