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Abstract

When applied to training deep neural networks, stochastic gradient descent (SGD) often
incurs steady progression phases, interrupted by catastrophic episodes in which loss and
gradient norm explode. A possible mitigation of such events is to slow down the learning
process.
This paper presents a novel approach, called SALERA, to control the SGD learning rate,
that uses two statistical tests. The first one, aimed at fast learning, compares the momentum
of the normalized gradient vectors to that of random unit vectors and accordingly gracefully
increases or decreases the learning rate. The second one is a change point detection test,
aimed at the detection of catastrophic learning episodes; upon its triggering the learning rate
is instantly halved.
Experiments on standard benchmarks show that SALERA performs well in practice, and
compares favorably to the state of the art.

Machine Learning (ML) algorithms require efficient optimization techniques, whether to solve convex problems
(e.g., for SVMs), or non-convex ones (e.g., for Neural Networks). As the data size and the model dimensionality
increase, mainstream convex optimization methods are adversely affected. Overall, Stochastic Gradient
Descent (SGD) is increasingly adopted.

Within the SGD framework, one of the main issues is to know how to control the learning rate.The adequate
speed depends both on the current state of the system (the weight vector) and the current mini-batch. Often, the
eventual convergence of SGD is ensured by decaying the learning rate as O(t) [23, 6] or O(

√
t) [29]. While

learning rate decay effectively prevents catastrophic events (sudden rocketing of the training loss and gradient
norm), many and diverse approaches have been designed to achieve quicker convergence through learning rate
adaptation [1, 7, 24, 16, 26, 2] (more in Section 1).

This paper proposes a novel approach to adaptive SGD, called SALERA (Safe Agnostic LEarning Rate
Adaptation), based on the conjecture that, if catastrophes are well taken care of, the learning process can speed
up whenever successive gradient directions show more correlation than random.
The frequent advent of catastrophic episodes [11, Chapter 8], [3] raises the question of how to best mitigate
their impact. Framing catastrophic episodes as random events,we adopt a purely curative strategy: detecting
and instantly curing catastrophic episodes. Formally, a sequential cumulative sum change detection test, the
Page-Hinkley (PH) test [20, 14] is adapted and used to monitor the learning curve reporting the minibatch
losses. If a change in the learning curve is detected, the system undergoes an instant cure by halving the
learning rate and backtracking to its former state.Once the risk of catastrophic episodes is well addressed,
the learning rate can be adapted in a more agile manner: the ALERA (Agnostic LEarning Rate Adaptation)
process increases (resp. decreases) the learning rate whenever the correlation among successive gradient
directions is higher (resp. lower) than random, by comparing the actual gradient momentum and the agnostic
momentum built from random unit vectors.

The contribution of the paper is twofold. First, it proposes an original and efficient way to control learning
dynamics (section 2.1). Secondly, it opens a new approach for handling catastrophic events and salvaging a
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significant part of doomed-to-fail runs (section 2.2). The experimental validation thereof compares favorably
with the state of the art on the MNIST and CIFAR-10 benchmarks (section 3).

1 Related work

SGD was revived in the last decade as an effective method for training deep neural networks with linear
computational complexity in the size of the dataset [4, 13]. SGD faces two limitations, depending on the
learning rate: too large, and the learning trajectory leads to catastrophic episodes; too small, and its convergence
takes ages.

Dealing with catastrophic events in deep learning The exploding gradient problem, described in [11,
Chapter 8] as the encounter of steep cliff structures in the derivative landscape during learning, is frequently
met while training neural networks (and even more so when training recurrent neural networks [3]).
When it comes to dealing with such events, most published work focuses on creating the conditions so that they
do not arise. Among the possibilities are the use of regularizations, e.g., L1 or L2 regularization [21]. Gradient
clipping [21], is another possibility. The introduction of batch normalization [15] also helps diminishing the
frequency of such events. Finally, proper initialization [10, 25] or unsupervised pre-training [8], i.e. initializing
the optimization trajectory in a good region of the parameter space, also diminish the frequency of such events.

Learning rate adaptation The dynamic adjustment of the learning rate was acknowledged a key issue since
the early SGD days (see [9] for a review).

Learning rate decay in O(t) was indeed first proposed in [23]. More recently, ADAGRAD [7] uses the
information of past gradients to precondition each update in a parameter-wise manner, dividing the learning
rate by the sum of squared past gradients. Several approaches have been proposed to mitigate ADAGRADś
learning rate decay to 0, including ADADELTA [28], RMSProp [26], and ADAM [16]. ADAM is based on
estimating the first and second moments of the gradient w.r.t. each parameter, and using their ratio to update
the parameters. SALERA also builds upon the use of the gradient second moment, with the difference that it
is compared with a fixed agnostic counterpart.

More remotely related are the momentum approaches, both its classic [22] and Nesterov versions [19] as
derived by [25], that rely on a relaxed sum of past gradients for indicating a more robust descent direction than
the current gradient.

2 SALERA

SALERA involves two components: a learning rate adaptation scheme, which ensures that the learning system
goes as fast as it can; and a catastrophic event manager, which is in charge of detecting undesirable behaviors
and getting the system back on track.

2.1 Agnostic learning rate adaptation

Rationale The basic idea of the proposed learning rate update is to compare the current gradient descent to
a random walk with uniformly chosen gradient directions. Indeed, the sum of successive normalized gradient
vectors (hereafter cumulative path) has a larger norm than the sum of uniformly drawn unit vectors if and
only if gradient directions are positively correlated. In such cases, the learning process has a global direction
and the process can afford to speed up. On the opposite, if gradient directions are less correlated than that of
random vectors, the cumulative path norm is smaller than its random equivalent and the learning rate should
be decreased. The ALERA scheme takes inspiration from the famed CMA-ES [12] and NES [27] algorithms,
today considered among the best-performing derivative-free continuous optimization algorithms.

The ALERA algorithm The partial adaptation of the CMA-ES scheme to the minimization of a loss function
L on a d-dimensional parameter space is defined as follows. Let θt be the solution at time t, gt = ∇θL(θt)
the gradient of the current loss, and ηt the current learning rate. SGD computes the solution at time t+ 1 by
θt+1 = θt − ηtgt. Let ‖.‖ denote the L2 norm and < ., . > the associated dot product.
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Definition. For t > 0, the exponential moving average of the normalized gradients with weight α, pt, and its
random equivalent rt are defined as:

p0 = 0; r0 = 0 (1)
pt = α gt/‖gt‖+ (1− α) pt−1 (2)
rt = αut + (1− α) rt−1 (3)

where (ut)t>0 are independent random unit vectors in IRd.

Proposition. For t > 0, the expectation µ(t) and variance σ2(d, t) of ‖rt‖2 as defined above are:

µ(t) = E(‖rt‖2) =
α

2− α
[1− (1− α)2t] (4)

σ2(d, t) = V ar(‖rt‖2) =
1

d

2α2(1− α)2

(2− α)2((1− α)2 + 1)
[1− (1− α)t][1− (1− α)t−1] (5)

Proof: Appendix A.

Let µ and σ2(d) denote the limits of respectively µ(t) and σ2(d, t) as t→ +∞. At time step t, the ALERA
scheme updates the cumulative path pt by comparing its norm with the distribution of the agnostic momentum
defined from µ and σ2(d). The learning rate is increased or decreased depending on the normalized gap
between the squared norm of pt and rt:

ηt+1 = ηt exp

(
C
‖pt‖2 − µ
σ(d)

)
(6)

with C a hyper-parameter of the algorithm.

2.2 Catastrophic event management

As said, the ability to learn fast requires an emergency procedure, able both to detect an emergency and to
recover from it. The PH detection test [20, 14] is chosen as it provides optimal guarantees about the trade-off
between the detection delay upon a change (affecting the average or standard deviation of the signal) and
the mean time between false alarms. For t > 0, it maintains the empirical mean ¯̀

t of the signal, and the
cumulative deviation Lt from the empirical mean (Lt = Lt−1 + (`t − ¯̀

t)). Finally, it records the empirical
bounds of Lt (Lmin = mintLt; Lmax = maxtLt). In case of a stationary signal, the expectation of Lt is 0
by construction; the PH change test is thus triggered when the gap between Lt and its empirical bounds is
higher than a problem-dependent threshold ∆, which controls the alarm rate.
The PH test is implemented in the SALERA algorithm as follows. ∆ is set to L(θ,first mini-batch)/λ, with
λ = 10 as it was found to be optimal on the datasets and architectures considered. Variables ¯̀

t, L and Lmin
are maintained. Upon test triggering (Lmin − L > ∆), the learning rate is halved and the weight vector θ is
reset to the last solution before then, and the PH test is reinitialized. See in Appendix B the full derivation of
the algorithm.

3 Experiments
Datasets and metrics All experiments are performed on the MNIST [18] and CIFAR-10 [17] datasets.
These are classification problems, for which we report classification accuracy on the test set at 20 epochs (end
of all runs), as well as their standard deviations on the 5 independent runs.

Algorithms Adagrad, NAG, and Adam are used as baselines. The agnostic adaptation rule and the change
detection can be applied independently. In order to separate their effect, 3 original algorithms are studied here:
ALeRA implements the agnostic learning rate adaptation without the change detection; Ag-Adam uses the
same agnostic adaptation for the learning rate on top of the ADAM algorithm. Finally, the change detection
mechanism is implemented with the agnostic adaptation, yielding SALeRA as described.

Network Models All experiments consider the following 4 network architectures, where the figure indicates
the number of hidden layers: M0: a softmax regression model with cross-entropy loss, M2: 2 fully connected
hidden layers with ReLU activation, on top of M0, M2b which is M2 with Batch Normalization layers [15]
added in each hidden layer, and finally M4b, a LeNet5-inspired convolutional models [18]. The code of the
algorithms and models, which was written using the Torch library [5], is available on GitHub.
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Table 1: Best performances (test error over all tested parameter settings) at 20 epochs of NAG, ADAGRAD,
ADAM, AG-ADAM, ALERA and SALERA (average and standard deviation on 5 runs). For each line, the best
results are in bold, and results less than 1 std.dev. away are in italics.

NAG Adagrad ADAM AG-ADAM ALERA SALERA
MNIST M0 20ep. 7.59 (.07) 7.51 (.09) 7.43 (.10) 7.29 (.09) 7.43 (.03) 7.44 (.04)

M2 20ep. 1.58 (.08) 1.71 (.08) 1.56 (.06) 1.57 (.04) 1.55 (.10) 1.59 (.09)
M2b 20ep. 1.47 (.10) 1.48 (.06) 1.57 (.94) 1.53 (.05) 1.43 (.04) 1.48 (.09)
M4b 20ep. .72 (.09) .82 (.08) .80 (.08) .79 (.05) .63 (.05) .64 (.07)

CIFAR M0 20ep. 59.73 (.19) 59.76 (.36) 59.81 (.24) 59.34 (.24) 59.31 (.11) 59.31 (.25)
M2 20ep. 45.08 (.32) 43.59 (.51) 44.43 (.50) 43.25 (.40) 43.19 (.21) 42.72 (.41)
M2b 20ep. 42.50 (.48) 43.79 (.25) 43.60 (.64) 42.72 (.33) 42.12 (.15) 42.50 (.29)
M4b 20ep. 27.45 (.39) 29.15 (.67) 27.84 (.59) 25.30 (.18) 26.35 (.64) 25.93 (.64)

The experimental evidence (Table 1) shows that, on the one hand, AG-ADAM quite often slightly but statistically
significantly improves on ADAM. On the other hand, in many cases, ALERA and SALERA yield similar
results; indeed, whenever ALERA does not meet catastrophic episodes, ALERA and SALERA have the same
behaviors. The advantage of catastrophe management is therefore to diminish the need for hyper-parameter
tuning. In order to determine to which extent the best results in Table 1 depend on the hyper-parameter settings
a sensitivity analysis was performed. The proposed hyper-parameters for ALERA and SALERA are found
to be α = .01 and C = 3.10−6. Finally, if a failed run is one which attains more than 80% test error after
20 epochs, ALERA is observed to have 18.3% failed runs over the chosen parameter range. Our catastrophe
management scheme makes it possible for SALERA to avoid approximately 40% of these failures, reaching a
rate of failure of 11.7% on the same parameter range.

4 Discussion

The first proposed contribution relies on the comparison of the gradient momentum with a fixed reference. It is
meant to estimate the overall correlation among the sequence of gradients, which can be thought of as a signal-
to-noise ratio in the process generated from the current solution, the objective and the successive mini-batches.
Depending on this ratio, the process can be accelerated or slowed down. The ALERA procedure, which
implements this idea, proves to be significantly able to increase and decrease the learning rate. Furthermore,
this process can be plugged on ADAM, with a performance improvement on average.

This however increases the risk of catastrophic episodes, with instant rocketing of the training loss and gradient
norm. The proposed approach relies on the fact that, on the one hand catastrophic episodes can be rigorously
detected, and that on the other hand, a neural net optimizer is almost doomed to face such episodes along the
optimization process, which are mostly detrimental to learning. Rather than choosing to slow convergence
to avoid them, the second contribution of the paper is an agnostic and principled way to detect and address
such episodes, which relies on the Page-Hinkley change point detection test. As soon as an event is detected,
learning rates are halved and the previous solution recovered.

A short-term perspective for further research is to apply the proposed approach to recurrent neural networks,
and to consider more complex datasets. Another perspective is to replace the halving trick by approximating
the line search, e.g. by exploiting the gaps between the actual momentum and the reference one, for several
values of the momentum weight factor. A third perspective regards the adaptation of the PH detection threshold
∆ during learning.The goal is to adapt ∆ when the PH mechanism is re-initialized (line 9 of Algorithm 1)
from the current loss values.
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Appendix A: Derivation of formula 4

Let us define r0 = 0, and for t > 0

rt = αut + (1− α)rt−1

with ut a unit vector uniformly drawn in IRd. We have by recurrence for t > 0

rt = α

t∑
l=1

(1− α)(t−l)ul

Thus

‖rt‖2 = α2

 t∑
l=1

(1− α)2(t−l)‖ul‖2 +
∑
l 6=k

(1− α)2t−l−k < ul, uk >

 (7)

We are dealing with unit vectors which are uniformly drawn. Thus with δ denoting the Kronecker delta

∀ l > 0 ‖ul‖2 = 1

∀ l, k > 0 E(< ul, uk >) = δlk

Taking the expectation in 7 we have

E(‖rt‖2) = α2
t∑
l=1

(1− α)2(t−l) (8)

that is,

E(‖rt‖2) = α2 1− (1− α)2t

1− (1− α)2
(9)

=
α

2− α
(
1− (1− α)2t

)
(10)

The derivation of formula 5 is similar.

Appendix B: algorithm of Safe Agnostic LEarning Rate Adaptation
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Algorithm 1: S-ALERA: Agnostic LEarning Rate Adaptation and Page-Hinkley change detection

Input: Model with loss function L
Parameters : Memory rate α, factor C //algorithm parameters

Initial learning rate η0, mini-batch ratio ρ // run parameters
Initialize : t← 0; p← 0; η ← η0; init(θ) // initialization

L,Lmin, `, ¯̀,← 0; ∆← L(θ,first mini-batch)/10 // initialize Page-Hinkley
1 while stopping criterion not met do
2 MB ← new mini-batch ; t← t+ 1 // perform forward pass
3 ` = ρL(θ,MB) + (1− ρ)`

4 ¯̀← (`+ t¯̀)/(t+ 1) // empirical mean of batch losses

5 L← L+ (`− ¯̀) // cumulated deviations from mean

6 Lmin ← min(Lmin, L) // lower bound of deviations

7 if L− Lmin > ∆ then

8 θ ← θ(b); η ← η/2 // Page-Hinkley triggered: backtrack

9 L,Lmin, ¯̀, `← 0; t← 0 // and re-initialize Page-Hinkley1

10 else
11 θ(b) ← θ // save for possible backtracks
12 g ← ∇θL(θ,MB) // compute gradient with backward pass
13 p← αg/‖g‖+ (1− α)p // exponential moving average of normalized gradients
14 η ← η exp

(
C(‖p‖22 − µ)/σ(d)

)
// agnostic learning rate update

15 θ ← θ − ηg // standard parameter update
16 end
17 end
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