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Abstract

The Kaczmarz and Gauss-Seidel methods both solve a linear system Xβ = y
by iteratively refining the solution estimate. Recent interest in these methods has
been sparked by a proof of Strohmer and Vershynin which shows the randomized
Kaczmarz method converges linearly in expectation to the solution. Lewis and
Leventhal then proved a similar result for the randomized Gauss-Seidel algorithm.
However, the behavior of both methods depends heavily on whether the system is
under or overdetermined, and whether it is consistent or not. Here 1 we provide
a unified theory of both methods, their variants for these different settings, and
draw connections between both approaches. We compare convergence properties
of both methods and their extended variants in all possible system settings. In
doing so, we also provide an extended version of randomized Gauss-Seidel which
converges linearly to the least norm solution in the underdetermined case. With
this result, a complete and rigorous theory of both methods is furnished.

1 Introduction

We consider solving a linear system of equations

Xβ = y, (1)

for a (real or complex)m×nmatrixX , in various problem settings. Recent interest in the topic was
reignited when Strohmer and Vershynin [7] proved the linear2 convergence rate of the Randomized
Kaczmarz (RK) algorithm that works on the rows ofX (data points). Following that, Leventhal and
Lewis [4] proved the linear convergence of a Randomized Gauss-Seidel (RGS), i.e. Randomized
Coordinate Descent, algorithm that works on the columns ofX (features).

1Our work has been accepted for publication in SIAM Journal on Matrix Analysis and Applications [1] .
2Mathematicians often refer to linear convergence as exponential convergence.
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1.1 Motivation and contribution

When the system of equations is inconsistent, as is typically the case when m > n in real-world
overconstrained systems, RK is known to not converge to the ordinary least squares solution

βLS := argmin
β

1
2‖y −Xβ‖

2
2 (2)

as studied by Needell [5]. Zouzias and Freris [8] extended the RK method with the modified Ran-
domized Extended Kaczmarz (REK) algorithm, which linearly converges to βLS . Interestingly, in
this setting, RGS does converge to βLS without any special extensions.

When m < n, there are fewer constraints than variables, and the system has infinitely many solu-
tions. In this case, we are often interested in finding the least Euclidean norm solution:

βLN := argmin
β
‖β‖2 s.t. y =Xβ. (3)

While RGS converges to βLS in the overdetermined setting, in the underdetermined setting it does
not converge to βLN . We will also argue that RK does converge to βLN without any extensions in
this setting.

The main contribution of our paper is to provide a unified theory of these related iterative methods
under different settings. We will also construct an extension to RGS that parallels REK, which
unlike RGS does converge to βLN (just as REK, unlike RK, converges to βLS). We shall see
that our Randomized Extended Gauss-Seidel (REGS) method does indeed possess these desired
properties. A summary of this unified theory is provided in Table 1.

Method
Overconstrained,

consistent :
convergence to β??

Overconstrained,
inconsistent :

convergence to βLS?

Underconstrained :
convergence to βLN?

RK Yes [7] No [5, Thm. 2.1] Yes [1]
REK Yes [8] Yes [8] Yes [1]
RGS Yes [4] Yes [4] No [1]
REGS Yes (Sec. 3.1) Yes (Sec. 3.3) Yes (Thm. 1)

Table 1: Summary of convergence properties for the overdetermined and consistent setting, overde-
termined and inconsistent setting, and underdetermined settings. We write β? to denote the solution
to (1) in the overdetermined consistent setting, with βLS and βLN being defined in (2) and (3) for
the other two settings.

2 Existing Algorithms and Related Work

In this section, we will summarize the algorithms mentioned in the introduction, i.e. RK, RGS
and REK. We will describe their iterative update rules and mention their convergence guarantees.
Throughout the paper we will use the notation Xi to represent the ith row of X (or ith entry in the
case of a vector) and X(j) to denote the jth column of a matrix X . We will write the estimation β
as a column vector. We write vectors and matrices in boldface, and constants in standard font.

2.1 Randomized Kaczmarz (RK)

The Kaczmarz method was first introduced in the notable work of Kaczmarz [3]. Strohmer and
Vershynin [7] showed that the RK method described above has an expected linear convergence rate
to the solution β? of (1), and are the first to provide an explicit convergence rate in expectation
which depends only on the geometric properties of the system. This work was extended by Needell
[5] to the inconsistent case, analyzed almost surely by Chen and Powell [2].

We describe here the randomized variant of the Kaczmarz method put forth by Strohmer and Ver-
shynin [7]. Taking X,y as input and starting from an arbitrary initial estimate for β (for example
β0 = 0), RK repeats the following in each iteration. First, a random row i ∈ {1, ...,m} is selected
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with probability proportional to its Euclidean norm, i.e. Pr(row = i) =
‖Xi‖22
‖X‖2F

, where ‖X‖F
denotes the Frobenius norm ofX . Then, project the current iterate onto that row, i.e.

βt+1 := βt +
(yi −Xiβt)

‖Xi‖22
(Xi)∗, (4)

where here and throughoutX∗ denotes the (conjugate) transpose ofX .

Intuitively, this update can be seen as greedily satisfying the ith equation in the linear system.

2.2 Randomized Extended Kaczmarz (REK)

For inconsistent systems, the RK method does not converge to the least-squares solution as one
might desire. This fact is clear since the method at each iteration projects completely onto a selected
solution space, being unable to break the so-called convergence horizon. Recently, Zouzias and
Freris [8] proposed a variant of the RK method motivated by the work of Popa [6] which instead
includes a random projection to iteratively reduce the component of y which is orthogonal to the
range of X . This method, named Randomized Extended Kaczmarz (REK) can be described by the
following iteration updates, which can be initialized with β0 = 0 and z0 = y:

βt+1 := βt +
(yi − zit −X

iβt)

‖Xi‖22
(Xi)∗, zt+1 = zt −

〈X(j), zt〉
‖X(j)‖22

X(j). (5)

Here, a column j ∈ {1, ..., n} is also selected at random with probability proportional to its Eu-

clidean norm: Pr(column = j) =
‖X(j)‖22
‖X‖2F

, and again X(j) denotes the jth column of X . Here, zt
approximates the component of y which is orthogonal to the range of X , allowing for the iterates
βt to converge to the true least-squares solution of the system. Zouzias and Freris [8] prove that
REK converges linearly in expectation to this solution βLS .

2.3 Randomized Gauss-Seidel (RGS)

The Randomized Gauss-Seidel (RGS) method (or the Randomized Coordinate Descent method)
repeats the following in each iteration. First, a random column j ∈ {1, ..., n} is selected with
probability proportional to its Euclidean norm (as in REK). We then minimize the objective L(β) =
1
2‖y −Xβ‖

2
2 with respect to this coordinate to get

βt+1 := βt +
X∗(j)(y −Xβt)
‖X(j)‖22

e(j) (6)

where e(j) is the jth coordinate basis column vector (all zeros with a 1 in the jth position). It can be
seen as greedily minimizing the objective with respect to the jth coordinate. Leventhal and Lewis
[4] showed that this algorithm has an expected linear convergence rate.

3 REGS

We next introduce an extension of RGS, analogous to the extension REK of RK. The purpose of
extending RK was to allow for convergence to the least squares solution. Now, the purpose of
extending RGS is to allow for convergence to the least norm solution. We view this method as a
completion to the unified analysis of these approaches, and it may also possess advantages in its own
right.

3.1 The algorithm

Consider the linear system (1) with m < n. Let βLN denote the least norm solution of the un-
derdetermined system as described in (3). The REGS algorithm is described by the following
pseudo-code. Analogous to the role z plays in REK, z iteratively approximates the component
in β orthogonal to the row-span of X . By iteratively removing this component, we converge to the
least norm solution. Note that outputting βt instead of βLNt = βt − zt in Algorithm 1 recovers the
RGS algorithm. This may be preferable in the overdetermined setting.
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Algorithm 1 Randomized Extended Gauss-Seidel (REGS)
1: procedure (X , y, maxIter) . m× n matrixX , y ∈ Cm, maximum iterations T
2: Initialize β0 = 0, z0 = 0
3: for t = 1, 2, . . . , T do
4: Choose columnX(j) with probability ‖X(j)‖22

‖X‖2F

5: Choose rowXi with probability ‖X
i‖22

‖X‖2F

6: Set γt =
X∗

(j)(Xβt−1−y)
‖X(j)‖22

e(j)
7: Set βt = βt−1 + γt
8: Set P i = Idn − (Xi)∗Xi

‖Xi‖22
. Idn denotes the n× n identity matrix

9: Update zt = P i(zt−1 + γt)

10: Update βLNt = βt − zt
11: end for
12: Output βLNt
13: end procedure

3.2 Main result

Our main result for the REGS method shows linear convergence to the least norm solution.

Theorem 1. The REGS algorithm outputs an estimate βLNT such that

E‖βLNT − βLN‖22 ≤ αT ‖β
LN‖22 + 2αbT/2c

B

1− α
(7)

where B =
‖XβLN‖22
‖X‖2F

and α =
(
1− σ2

min(X)

‖X‖2F

)
.

The full proof of Theorem 1 can be found in [1].

3.3 Comparison

Theorem 1 shows that, like the RK and REK methods, REGS converges linearly to the least-norm
solution in the underdetermined case. We believe it serves to complement existing analysis and
completes the theory of these iterative methods in all three cases of interest. For that reason, we
compare the three approaches for the underdetermined setting here. For ease of comparison, set α
as in Theorem 1, and write κ = σmax(X)/σmin(X) for the condition number of X . From the
convergence rate bounds for RK [7] and REK [8], and after applying elementary bounds to (7) of
Theorem 1, we have:

(RK) E‖βt − βLN‖22 ≤ αt‖βLN‖22 (8)

(REK) E‖β2t − βLN‖22 ≤ αt(1 + 2κ2)‖βLN‖22 (9)

(REGS) E‖β2t − βLN‖22 ≤ αt(1 + 2κ2)‖βLN‖22. (10)

We find similar results in the overdetermined, inconsistent setting. Using the convergence rate
bounds for RGS [4], REK [8], and REGS (Theorem 1), we have:

(RGS) E‖βt − βLS‖22 ≤ αt‖βLS‖22 (11)

(REK) E‖β2t − βLS‖22 ≤ αt(1 + 2κ2)‖βLS‖22 (12)

(REGS) E‖β2t − βLS‖22 ≤ αt(1 + 2κ2)‖βLS‖22. (13)

Thus, up to constant terms (which are likely artifacts of the proofs), the bounds provide the same
convergence rateα, which is not surprising in light of the connections between the methods. Detailed
experiments can be found in the full version of the paper [1].
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4 Conclusion

The Kaczmarz and Gauss-Seidel methods operate in two different spaces (i.e. row versus column
space), but share many parallels. In this paper we drew connections between these two methods,
highlighting the similarities and differences in convergence analysis. The approaches possess con-
flicting convergence properties; RK converges to the desired solution in the underdetermined case
but not the inconsistent overdetermined setting, while RGS does the exact opposite. The extended
method REK in the Kaczmarz framework fixes this issue, converging to the solution in both scenar-
ios. Here, we present the REGS method, a natural extension of RGS, which completes the overall
picture. We hope that our unified analysis of all four methods will assist researchers working with
these approaches.
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