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Abstract

We develop a novel framework to study smooth and strongly convex optimization
algorithms. Focusing on quadratic functions we are able to examine optimization
algorithms as a recursive application of linear operators. This, in turn, reveals
a powerful connection between a class of optimization algorithms and the ana-
lytic theory of polynomials whereby new lower and upper bounds are derived.
Whereas existing lower bounds for this setting are only valid when the dimen-
sionality scales with the number of iterations, our lower bound holds in the natural
regime where the dimensionality is fixed. Lastly, expressing it as an optimal solu-
tion for the corresponding optimization problem over polynomials, as formulated
by our framework, we present a novel systematic derivation of Nesterov’s well-
known Accelerated Gradient Descent method. This rather natural interpretation
of AGD contrasts with earlier ones which lacked a simple, yet solid, motivation.

1 Introduction

In the field of mathematical optimization one is interested in efficiently solving a minimization
problem of the form

min
x∈X

f(x), (1)

where the objective function f is some real-valued function defined over the constraints set X .
Many core problems in the field of Computer Science, Economic, and Operations Research can
be readily expressed in this form, rendering this minimization problem far-reaching. That being
said, in its full generality this problem is just too hard to solve or even to approximate. As a
consequence, various structural assumptions on the objective function and the constraints set, along
with better-suited optimization algorithms, have been proposed so as to make this problem viable.

One such case is smooth and strongly convex functions over some d-dimensional Euclidean space.
Formally, we consider continuously differentiable f : Rd → R which are L-smooth, i.e.,

‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖ , ∀x,y ∈ Rd

and µ-strongly convex, that is,

f(y) ≥ f(x) + 〈y − x,∇f(x)〉+
µ

2
‖y − x‖2 , ∀x,y ∈ Rd
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A wide range of applications together with very efficient solvers have made this family of
problems very important. Naturally, an interesting question arises: how fast can these kind of
problems be solved? better said, what is the computational complexity of minimizing smooth and
strongly-convex functions to a given degree of accuracy?1 Prior to answering these, otherwise
ill-defined, questions, one must first address the exact nature of the underlying computational model.

Although being a widely accepted computational model in the theoretical computer sciences, the
Turing Machine Model presents many obstacles when analyzing optimization algorithms. In their
seminal work, [15] evaded some of these difficulties by proposing the black box computational
model, according to which information regarding the objective function is acquired iteratively by
querying an oracle. This model does not impose any computational resource constraints2. Ne-
mirovsky and Yudin showed that for any optimization algorithm which employs a first-order oracle,
i.e. receives (f(x),∇f(x)) upon querying at a point x ∈ Rd, there exists an L-smooth µ-strongly
convex quadratic function f : Rd → R, such that for any ε > 0 the number of oracle calls needed
for obtaining an ε-optimal solution x̃, i.e.,

f(x̃) < min
x∈Rd

f(x) + ε, (2)

must satisfy

# Oracle Calls ≥ Ω̃
(
min

{
d,
√
κ ln(1/ε

})
, (3)

where κ := L/µ denotes the so-called condition number.

The result of Nemirovsky and Yudin can be seen as the starting point of the present paper. The re-
stricted validity of this lower bound to the first O(d) iterations is not a mere artifact of the analysis.
Indeed, from an information point of view, a minimizer of any convex quadratic function can be
found using no more than O(d) first-order queries. Noticing that this bound is attained by the Con-
jugate Gradient Descent method (CGD, see [18]), it seems that one cannot get a non-trivial lower
bound once the number of queries exceeds the dimension d. Moreover, a similar situation can be
shown to occur for more general classes of convex functions. However, the known algorithms which
attain such behavior (such as CGD and center-of-gravity, e.g., [14]) require computationally inten-
sive iterations, and are quite different than many common algorithms used for large-scale optimiza-
tion problems, such as gradient descent and its variants. Thus, to capture the attainable performance
of such algorithms, we must make additional assumptions on their structure. The following simple
observation seems to be particularity true in large-scale scenarios:

When applied on quadratic functions, the update rules of many optimization algorithms reduce to
a recursive application of some linear transformation which depends, possibly randomly, on the
previous p query points.

Indeed, the update rule of CGD for quadratic functions is non-stationary, i.e. uses a different linear
transformation at each iteration, as opposed to other optimization algorithms which utilize less
complex update rules such as: stationary updates rule, e.g., Gradient Descent, Accelerated Gradient
Descent (see scheme 2.2.11 in [17]), Newton’s method, The Heavy Ball method [18], and in the
field of machine learning: SDCA [22], SVRG [8] and SAG [20]; cyclic update rules, e.g,. Cyclic
Coordinate Descent; and piecewise-stationary update rules, e.g., Accelerated SDCA [21]. Inspired
by this observation, in the present work we explore the boundaries of optimization algorithms which
admit stationary update rules. We call such algorithms p-Stationary Canonical Linear Iterative
optimization algorithms (abbr. p-SCLI), where p designates the number of previous points which
are required to generate new points. The quantity p can be interpreted as a limit on the amount of
memory at the algorithm’s disposal.

1Natural as these questions might look today, matters were quite different only few decades ago. In his book
’Introduction to Optimization’ which dates back to 87’, Polyak B.T devotes a whole section as to: ’Why Are
Convergence Theorems Necessary?’ (See section 1.6.2 in [18]).

2In a sense, this model is dual to the Turing Machine model where all the information regarding the param-
eters of the problem is available prior to the execution of the algorithm, but the computational resources are
limited in time and space.
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Similar to the analysis of power iteration methods, the convergence properties of such algorithms
are intimately related to the eigenvalues of the corresponding linear transformation. Concretely, as
the convergence rate of a recursive application of a linear transformation is essentially characterized
by its largest magnitude eigenvalue, the asymptotic convergence rate of p-SCLI algorithms can
be bounded from above and from below by analyzing the spectrum of the corresponding linear
transformation. At this point we would like to emphasize that the technique of linearizing
iterative procedures and analyzing their convergence behavior accordingly, which dates back to
the pioneering work of the Russian mathematician Lyapunov, has been successfully applied in the
field of mathematical optimization many times, e.g., [18] and more recently [9]. However, whereas
previous works were primarily concerned with deriving upper bounds on the magnitude of the
corresponding eigenvalues, in this work our reference point is lower bounds.

As eigenvalues are merely roots of characteristic polynomials3, our approach involves establishing
a lower bound on the maximal modulus (absolute value) of the roots of polynomials. Clearly, in
order to find a meaningful lower bound, one must first find a condition which is satisfied by all
characteristic polynomials that correspond to p-SCLIs. We show that such condition does exist
by proving that characteristic polynomials of consistent p-SCLIs, which correctly minimize the
function at hand, must have a specific evaluation at λ = 1. This in turn allows us to analyze the
convergence rate purely in terms of the analytic theory of polynomials, namely,

Find min {ρ(q(z)) | q(z) is a real monic polynomial of degree p and q(1) = r} (4)

where r ∈ R and ρ(q(z)) denotes the maximum modulus over all roots of q(z). Although a vast
range of techniques have been developed for bounding the moduli of roots of polynomials (e.g.,
[10, 19, 12, 25, 13, 4]), to the best of our knowledge, few of them address lower bounds (e.g.,
[5]). The minimization problem (4) is also strongly connected with the question of bounding the
spectral radius of ’generalized’ companion matrices from below. Unfortunately, this topic too lacks
an adequate coverage in the literature (e.g., [26, 27, 6, 7]). Consequently, we devote part of this
work to establish new tools for tackling (4). It is noteworthy that these tools are developed by using
elementary arguments. This sharply contrasts with previously proof techniques used for deriving
lower bounds on the convergence rate of optimization algorithms which employed heavy machinery
from the field of extremal polynomials, such as Chebyshev polynomials (e.g., [11]).

Based on the technique described above we present a novel lower bound on the convergence rate of
p-SCLI optimization algorithms. More formally, we prove that any p-SCLI optimization algorithm
over Rd, whose iterations can be executed efficiently in a well defined sense, requires

#Oracle Calls ≥ Ω̃
(

p
√
κ ln(1/ε)

)
(5)

in order to obtain an ε-optimal solution, regardless of the dimension of the problem. This result
partially complements the lower bound presented earlier in Inequality (3). More specifically, for
p = 1, we show that the runtime of algorithms whose update rules do not depend on previous points
(e.g. Gradient Descent) and can be computed efficiently scales linearly with the condition number.
For p = 2, we get the optimal result for smooth and strongly convex functions. For p > 2, this
lower bound is clearly weaker than the lower bound shown in (3) at the first d iterations. However,
we show that it can be indeed attained by p-SCLI schemes, and surprisingly, some of them can
be executed efficiently for certain classes of quadratic functions. Finally, we believe that a more
refined analysis of problem (4) would show that this technique is powerful enough to meet the
classical lower bound

√
κ for any p, in the worst-case over all quadratic problems.

The last part of this work concerns a cornerstone in the field of mathematical optimization, i.e.,
Nesterov’s well-known Accelerated Gradient Descent method (AGD). At the time the work of Ne-
mirovsky and Yudin was published, it was known that Gradient Descent (GD) obtains an ε-optimal
solution by issuing no more than

O(κ ln(1/ε))

3In fact, we will use a polynomial matrix analogous of characteristic polynomials which will turns out to be
more useful for our purposes.
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first-order queries. The gap between this upper bound and the lower bound shown in (3) has intrigued
many researchers in the field. Eventually, it was this line of inquiry that led to the discovery of AGD
by Nesterov [16], a slight modification of the standard GD algorithm, whose iteration complexity is

O
(√
κ ln(1/ε)

)
.

Unfortunately, AGD lacks the strong geometrical intuition which accompanies many optimization
algorithms, such as FGD and the Heavy Ball method. Primarily based on sophisticated algebraic
manipulations, its proof strives for a more intuitive derivation (e.g., [3, 2, 24, 23, 1]). This downside
has rendered the generalization of AGD to different optimization scenarios, such as constrained
optimization problems, a highly non-trivial task which up to the present time does not admit
a complete satisfactory solution. Surprisingly enough, by designing optimization algorithms
whose characteristic polynomials are optimal with respect to a constrained version of (4), we
have uncovered a novel simple derivation of AGD. This reformulation as an optimal solution for
a constrained optimization problem over polynomials, shows that AGD and the Heavy Ball are
essentially two sides of the same coin.

To summarize, our main contributions are the following:

• We define a class of algorithms (p-SCLI) in terms of linear operations on the last p itera-
tions, and show that they subsume some of the most interesting algorithms used in practice.
• We prove that any p-SCLI optimization algorithm must use at least

Ω̃
(

p
√
κ ln(1/ε)

)
iterations in order to obtain an ε-optimal solution. As mentioned earlier, unlike existing
lower bounds, our bound holds for every fixed dimensionality.
• We show that there exist matching p-SCLI optimization algorithms which attain the con-

vergence rates stated above for all p. Alas, for p ≥ 3, an expensive pre-calculation task
renders these algorithms inefficient.

• As a result, we focus on a restricted subclass of p-SCLI optimization algorithms which
can be executed efficiently. This yields a novel systematic derivation of Full Gradient
Descent, Accelerated Gradient Descent, The Heavy-Ball method (and potentially other
efficient optimization algorithms), all of which correspond to optimal solutions of a specific
form of optimization problems on the moduli of polynomials’ roots.

• We present new schemes which offer better utilization of second-order information by ex-
ploiting breaches in existing lower bounds. This leads to a new optimization algorithm
which obtains a rate of 3

√
κ ln(1/ε) in the presence of large enough spectral gaps.
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