Scaling Up Simultaneous Diagonalization
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Abstract

Simultaneous matrix diagonalization is a key subroutine in many machine learn-
ing problems, including blind source separation and parameter estimation in latent
variable models. Here, we extend joint diagonalization algorithms to low-rank and
asymmetric matrices and also provide extensions to the perturbation analysis of
these methods. Our results allow joint diagonalization to scale to larger problem
sizes and to new domains; we give a survey of such applications and report im-
provements relative to the state-of-the-art on a latent variable learning task. We
hope that our results will demonstrate the usefulness and versatility of joint diag-
onalization as a tool in optimization and machine learning.

1 Introduction

Simultaneous or joint diagonalization is a basic problem in numerical analysis, in which we are
given a set of L > 2 matrices M = {M;}£_, of the form

M, =UNUT, (1)

where U € R%** are factors common to all the matrices, and the diagonal A; € R*** is specific to
each matrix M;. Our task consists in determining the unknown factors and weights from the matrices
M;. Unlike traditional single-matrix diagonalization, the U may be non-orthogonal (such factors
are identifiable when L > 2; see Afsari [!]), and even when the U are orthogonal, simultaneously
diagonalizing the entire set M is often more robust to noise than diagonalizing a single M;.

In this paper, we extend existing joint diagonalization algorithms to low-rank (k¥ < d) and asym-
metric matrices; surprisingly, these basic settings have not been discussed in the literature. We also
complement these results with a perturbation analysis that gives bounds on the accuracy of a solution
for noisy matrices M; = UA,; UT + €R; as a function of € > 0 (the R; being unit-norm matrices).

Our extensions enable joint diagonalization to scale to new settings and to larger problems. We
survey several applications, which include blind-source separation [2] and latent variable estima-
tion via tensor factorization [3]. We demonstrate the effectiveness of our extensions via numerical
experiments on a tensor decomposition task and show that they are competitive with current state-
of-the-art methods. Our results demonstrate that joint diagonalization can be a useful and versatile
tool for designing optimization and machine learning algorithms.

Notation Simultaneous diagonalization can be orthogonal or non-orthogonal; in the former case,
the U in Equation 1 are assumed to be orthogonal. We use ® to denote the outer product: e.g.
if w,v,w € R? then u ® v @ w € R¥*4Xd_ A (third-order) tensor of rank k is defined as

T = Zle mia; ® b; ® ¢;, where a;,b;,¢c; € R? are factors and @ € RF are their weights.
Tensor-matrix multiplication T(X,Y, Z) (for X,Y,Z € R%*%) is defined as T(X,Y, Z);jr =
221:1 an:l Zizl TynnXi1iYm;j Znk- These definitions naturally extend to higher-order tensors.

* These authors contributed equally.



2 Algorithms and Extensions

Background We consider here simultaneous diagonalization algorithms that minimize the objec-
tive F(V) = Y., of (V- IMV-T) = Y0 3 (V- EM V= T)2;, which is the sum of squared

off-diagonal elements. Two popular methods for minimizing F incluzie the Jacobi method [11, 12]
for the orthogonal case and the QRJ1D algorithm [13] for the non-orthogonal case. Both techniques
iteratively construct V-1lviaa product of simple matrices V~1 = By .- ByBj. In the Jacobi algo-
rithm, B, is a Givens rotation [11] G;;(0) = cos8(As;; +Aj;) +sin0(A;; — Aj;) for some angle 6,
with A;; being a matrix which is 1 in the (¢, j)-th entry and 0 elsewhere. In the QRJ1D algorithm,
By is H;j(a) = I + a/;; for some a. The @ and 6 are chosen via a closed-form formula such as to

decrease F'. Both methods proceed in a number of “sweeps”, with O(d> L) time per sweep.

Algorithm 1 Low-rank Jacobi Orthogonal low-rank matrices Notice that
the Jacobi algorithm applied to a single matrix
M with k non-zero sorted eigenvalues \; >
Ao > ... > X, would only need to zero out
the entires of M associated with the first &
rows and the first k£ columns, i.e. transform

Require: symmetric matrices (M;)%,
Initialize factors: U = [
while objective is decreasing do

Let 6 be the minimizer of F(G;(0))

fori=1,2,...k do M into U (4 % )U™. The first k columns of U
for j =i+1, + 2_7 o d do will correspond to eigenvectors; the remaining
Let 0 be the minimizer of F'(G';(0)) columns will contain arbitrary numbers. Do-
U<+ UG;;(9) ing so requires kd Givens rotations per sweep:

M, + Gy (é)T MGy (é) vl € [L)] one for every row of the eigenvalue block, mul-

i z:ZL:1 (My);5] > Zlel |(M,)::| then tiplied by one for every column in the matrix.
Flip columns 7 and j in U and the M; If the eigenvalues of the input matrix M are
not sorted, then we can sort the diagonal of
M after every sweep of Jacobi (while still per-
forming only kd Givens rotations per sweep). When the algorithm terminates, all the k& non-zero
eigenvalues will find themselves in the top k X k corner; if that wasn’t the case, then they would have
been swapped out with another entry from outside that block. This idea is used in current single-
matrix low-rank Jacobi algorithms [14]. When there are multiple matrices, the components j over
which the rank is positive are ones for which Elel [(A7);;] > 0. This suggests a natural extension
of the above idea: choose Givens rotations that push mass on the sum of the absolute values of the
matrix diagonals towards the upper left. This idea is implemented in Algorithm 1; although Algo-
rithm 1 is only guaranteed to converge to local optima (rotations don’t change the objective F', which
otherwise decreases), we show via extensive experiments that it converges globally in practice.

Non-orthogonal low-rank matrices The Algorithm 2 Low-rank QRJ1D
QRIJ1D algorithm has a very similar structure Require: symmetric matrices ( Ml)la1

to Jacobi: over the course of a sweep, the ma- Initialize factors: U = I

trices M are first multiplied by a Givens rota- while objective is decreasing do

tion, and then by a lower triangular matrix. In fori=1,2,...k do

each case, a rotation only affects two columns forj=i+1,i+2,..ddo

and two rows of M;. Let 6 be the minimizer of F(G;(6))
We can similarly sort the diagonal entries of U+U Gij(é)

the matrices and zero-out only the top k x k M; < Gij(0)" MGy (0) VI € [L)]

square of the M. This leads to Algorithm 2.
Note that both algorithms differ from standard
Jacobi and QRJ1D only by column sorting.

oL L
i)y [(M)j5] > 30020 [(My)iq| then
Flip columns ¢ and j in U and the M,
for:=1,2,....,k do
forj=14+1,94+2,...,ddo

Asymmetric matrices Suppose now that we Let @ be the minimizer of F(H;;(a))

have a set of L > 2 matrices M = {M;}-, U « UH,(a)
of the form M; = UA; VT, where U € R%1 %k T N

and V € R%** are sets of common fac- Ml t Hij (@)™ M, Hi; (La) Vi€ [L]
tors, possibly non-orthogonal. We propose if 2;21 (M) ‘ > 21;1 |(M,)i;] then
here a general reduction to the symmetric case. Flip columns ¢ and j in U and the M,
For each M, define another matrix N; =




(1\(/)![ 1‘?) and observe that (J\gz Z‘{f) = (T X)) (55w U) . The (IN;) are symmetric

matrices with common (in general, non-orthogonal) factors; their diagonalization yields the U, V.

The above approach runs in O(d;d3) time (assuming dy > d1), which is worse than the O(d3dz)
time complexity of SVD for a single matrix. It remains to be seen if non-orthogonal joint diagonal-
ization admits algorithms are as fast as ones for the ordinary SVD.

Perturbation analysis ~Given noisy matrices of the form M; = UANU” +¢€R; (e > 0 and R; a unit
norm matrix) we can bound the error between the perturbed and unperturbed minimizers of F' as a
function of e. In brief, we show that for each true component vector u;, there is a component @; of

the perturbed minimizer of F' such that ||7; —u;|2 < €4/ Zle E7;+o(e). In the orthogonal setting,

B = iy Qu—=A)u] Riug
* Sl a—An)?
setting, the expression depends on the ratios i— of the different eigenvalues. We formally state our

J
bounds in Section B.

depends on the average eigengap of the M;. In the non-orthogonal

Convergence properties We next consider the question of convergence to minimizers of the ob-
jective F. Even in the full-rank setting, the global convergence of the simultaneous Jacobi method
remains an open problem. [15, 12]. In practice, however, this method is well-known to behave as
if it had global convergence [ 1, 12, 15]. In the appendix, we show numerically that our low-rank
orthogonal method converges globally as well, while low-rank QRJ1D may sometimes get stuck
in local optima. We complement these results with the formal guarantee that for sufficiently small
e > 0, the solution of Algorithm 1 will satisfy our perturbation bounds in the orthogonal setting.
Overall, these results can be used to derive theoretical guarantees for algorithms that use joint diag-
onalization as a subroutine; see [3] for an example.

3 Applications

We now survey several applications of joint diagonalization and explain how our algorithms may
improve these strategies. We also hope to give the reader a sense of the usefulness and versatility of
joint diagonalization in machine learning.

Independent component analysis In independent component analysis (ICA; [4]), we observe
data {z;}? , generated from a model z; = As;, where the s; are a set of unknown signals (e.g. n
audio 51gnals from speakers at a cocktail party) that were mixed by an unknown matrix A. Our goal is
to recover A and the s; from the x;. A popular way of solving ICA is via the JADE algorithm, which
involves simultaneously diagonalizing eigenmatrices of the fourth order cumulant tensor. See [5]
for details. Our algorithms may improve the efficiency of ICA algorithms when there are significant
differences between the number if microphones and audio signals (i.e. when A is rectangular).

Parameter estimation in general latent variable models Recent work [3] has shown that the
connection between tensor factorization and joint diagonalization algorithms extends beyond ICA
to a general tensor factorization algorithm that can be applied to learn several latent variable models,
such as Gaussian mixture models, topic models, hidden Markov models, etc. [0].

For illustrative purposes, consider the single topic model [6], defined as follows: For each of n
documents, draw a latent “topic” h € [k] with probability P[h = 4| = ; and three observed words
x1, %2, 23 € {e1,...,eq}, which are conditionally independent given h with Plz; = w | h = 1] =
w;y, for each j € {1,2,3}. The parameter estimation task is to output an estimate of the parameters

(m, {u; }¥_,) given n documents {wl ,:cgl),:cg) ?_, (importantly, the topics are unobserved). The
method of moments approach casts the parameter estimation problem as one of tensor factorization:
define the empirical tensor 7' = + ) xl ® xg’) ® ng) = Zle T ® u; ® u; + €R, where

€R € RIxdxd ig statistical noise that goes to zero as n — oo.

The factors of this tensor, (7, {u;}¥_;), and hence the parameters of the model, can be recov-
ered using simultaneous diagonalization. Consider of determining the tensor decomposition of
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Figure 1: Low rank QRJ1D for tensor factorization compared to state-of-the-art methods.

the form 7" = ), wiu?g. By projecting 1" along vectors wy, ..., wr, we can produce L matri-
ces T(I,1,w), = >, mi(w; u;)u® that can be jointly diagonalized as in Equation 1, with factor
U. [3] show that this method is less sensitive to perturbations in 7' than the popular tensor power
method [6] and has natural extensions to non-orthogonal factors w;. Our low-rank and asymmetric
extensions enable the above method to be applies to asymmetric tensors as well as to large low-rank

matrices.

Other applications Common component analysis (CCA; [7]) is a technique that generalizes PCA
to K groups of data, each having a different covariance matrix X;. We are interested in a set of

factors U that explain well the variance in each group: i.e., we would like Zszl 15, — UAMUT ||
to be small. Such problems arise, for example, in econometrics, where we may observe data from
k countries and would like to explain its variance using the same % interpretable factors. Our algo-
rithms extend CCA to asymmetric and low-rank factors.

Other recent applications of joint diagonalization include new Bayesian algorithms for common
spatial pattern analysis [8], a generalization of blind source separation to spatial data, kernel-based
non-linear blind source separation [9], as well as applications in signal processing [10]. In each
case, our methods can scale existing algorithms to larger low-rank matrices.

New applications Besides scaling existing algorithms to much larger matrices or tensors our tech-
niques may also help solve new problem classes, such as kernelized extensions of blind source sep-
aration [9] or common principal components analysis. Such problems typically exhibit matrices of
high dimension, but relatively low rank. Our methods could be extended to handle new types of
problems, such common sparse SVD, where we would represent groups of data (e.g. images) in a
common low-rank sparse basis.

4 Experiments

To evaluate our new methods, we performed two series of experiments. First, we examined their
convergence properties: we ran each algorithm 1000 times on different sets of L random jointly
diagonalizable matrices UA;UT + €R (for d = 15, L = k = 5) corrupted with varying amounts
of noise e and plotted the histogram of final objective function values. In the orthogonal setting, we
observed a tight distribution around ¢, suggesting that Algorithm 1 converges to a global optima. In
the non-orthogonal setting, we found that Algorithm 2 would occasionally get stuck in local optima.
See Section A.1 for more details.

Next, we used Algorithm 2 as a subroutine for factorizing non-orthogonal tensors [3] (Figure 1).
In the full-rank setting, Algorithm 2 performed identically to its full-rank counterpart; in the low-
rank setting, it was only slightly less accurate due to a higher susceptibility to local optima. Most
interestingly, our methods were competitive with alternating and non-linear least squares, two pop-
ular state-of-the-art tensor decomposition methods. Finally, in Section A.2, we performed a similar
analysis for asymmetric tensors and again found our methods to be competitive with existing alter-
natives. This suggests our algorithm may improve existing latent variable estimation algorithms.
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