On the Tightness of LP Relaxations for Structured Prediction

Ofer Meshi Mehrdad Mahdavi David Sontag
Toyota Technological Institute at Chicago Courant Institute of Mathematical Sciences
New York University

Abstract

Structured prediction applications often involve complex inference problems that
require the use of approximate methods. Approximations based on linear pro-
gramming (LP) relaxations have proved particularly successful in this setting, with
both theoretical and empirical support. Despite the general intractability of infer-
ence, it has been observed that in many real-world applications the LP relaxation is
often tight. In this work we propose a theoretical explanation to this striking obser-
vation. In particular, we show that learning with LP relaxed inference encourages
tightness of training instances. We complement this result with a generalization
bound showing that tightness generalizes from train to test data.

1 Introduction

Many applications of machine learning can be formulated as prediction problems over structured
output spaces (Bakir et al., 2007). In such problems output variables are predicted jointly in order to
take into account mutual dependencies between them, such as high-order correlations or structural
constraints. Unfortunately, the improved expressive power of these models comes at a computational
cost, and indeed, exact prediction and learning become NP-hard in general. Despite this worst-
case intractability, efficient approximations often achieve very good performance in practice. In
particular, one type of approximation which has proved quite effective in many applications is based
on linear programming (LP) relaxation. In this approach the prediction problem is first cast as an
integer LP (ILP), and then the integrality constraints are relaxed to obtain a tractable program. In
addition to achieving high prediction accuracy, it has been observed that LP relaxations are often
tight in practice. That is, the solution to the relaxed program happens to be optimal for the original
hard problem (an integral solution is found). This is particularly surprising since some of these LPs
are quite complicated, consisting of thousands of variables and constraints, and their score function
is not constrained in any way. So why are these real-world instances not as bad as their theoretical
worst case?

Unfortunately, our understanding of this interesting phenomenon has been lacking. This work aims
to address this question and provide a theoretical explanation for the tightness of LP relaxations in
the context of structured prediction. In particular, we show that the approximate training objective,
although designed to produce accurate predictors, also induces tightness of the LP relaxation as
a byproduct. Interestingly, our analysis also suggests that exact training does not have a similar
effect, which is consistent with previous empirical findings. To explain tightness of fest instances,
we complement this result with a generalization bound for integrality. Our bound implies that if
many training instances are integral, then test instances are also likely to be integral.

2 Background

In this section we review the formulation of the structured prediction problem, its LP relaxation, and
the associated learning problem. Consider a prediction task where the goal is to map a real-valued
input vector x to a discrete output vector y = (y1,...,¥n). A popular model class for this task



is based on linear classifiers. In this setting prediction is performed via a linear discriminant rule:
y(z;w) = argmax,, w' ¢(z,y’), where ¢(z,y) € R? is a function mapping input-output pairs to
feature vectors, and w € R is the corresponding weight vector. Since the output space is often huge
(exponential in n), it will generally be intractable to maximize over all possible outputs.

In many applications the score function has a particular structure. Specifically, we will assume that
the score decomposes as a sum of simpler score functions: w ' ¢(z,y) = > w, ¢e(z,y.), where
Y 1s an assignment to a (non-exclusive) subset of the variables c. For example, it is common to use
such a decomposition that assigns scores to single and pairs of output variables corresponding to
nodes and edges of a graph G: w ' ¢(x,y) = Yiev@) w; di(x,y;) + Yijer(G) w;;@j(m, Yir Yj)-
Viewing this as a function of y, we can write the prediction problem as: max, » . 0.(yc; z, w) (we
will sometimes omit the dependence on = and w in the sequel).

Due to its combinatorial nature, the prediction problem remains NP-hard despite the decomposition
assumption. Fortunately, efficient approximations have been proposed. Here we will be particularly
interested in approximations based on LP relaxations. We begin by formulating prediction as the

following ILP:!
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Here, p.(y.) is an indicator variable for a factor ¢ and local assignment ., and ¢ is the total number
of factor assignments (dimension of ;). The set My, is known as the local marginal polytope
(Wainwright and Jordan, 2008). First, notice that there is a one-to-one correspondence between
feasible p’s and assignments y’s, which is obtained by setting p to indicators over local assignments
(y. and y;) consistent with y. Second, while solving ILPs is NP-hard in general, it is easy to obtain
a tractable program by relaxing the integrality constraints (1 € {0,1}7), which may introduce
fractional solutions to the LP. Depending on the scores #, sometimes the optimal solution to the
relaxed LP may actually be integral (i.e., satisfy u € {0,1}9). In fact, for some score functions,
such as super-modular scores, this is guaranteed to happen (Taskar et al., 2004). For a more general
characterization see Thapper and Zivny (2012). However, these sufficient conditions are by no
means necessary, and indeed, many score functions that are useful in practice do not satisfy them
but still produce highly integral solutions (Sontag et al., 2008; Finley and Joachims, 2008; Martins
et al., 2009; Koo et al., 2010). In the next section we propose a simple and intuitive explanation for
this empirical observation.

In order to achieve high prediction accuracy, the parameters w are learned from training data. In
this supervised learning setting, the model is fit to labeled examples {(z(™), y(™))}M_  where the

goodness of fit is measured by a task-specific loss A(y(z(™);w),y(™). In the structured SVM
(SSVM) framework (Taskar et al., 2003; Tsochantaridis et al., 2004), the empirical risk is upper
bounded by a convex surrogate called the structured hinge loss, which yields the training objective:

n}})anax[ ( (m) y) — ¢(m(m)7y<m>))+ﬁ(yay(m))]- M

This is a convex function of w and hence can be optimized in various ways. But, notice that the
objective includes a maximization over outputs y for each training example. This loss-augmented
prediction task needs to be solved repeatedly during training (e.g., to evaluate subgradients), which
makes training intractable in general. Fortunately, as in prediction, LP relaxation can be applied to
the structured loss (Taskar et al., 2003; Kulesza and Pereira, 2007), which yields the relaxed training
objective:
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where 0,,, € RY is a score vector in which each entry represents w;r Pe (ac(m)7 y.) for some ¢ and y,,

similarly ¢,,, € R? is a vector with entries A.(y,, y£m) ), and ., is the integral vector corresponding
to y(™).

"For convenience we introduce singleton factors 6;, which can be set to 0 if needed.



3 An Argument for Integrality

In this section we present our main result, proposing an explanation for the observed tightness of
LP relaxations. To this end, we make two complementary arguments: in Section 3.1 we argue that
optimizing the relaxed training objective of Eq. (2) also has the effect of encouraging integrality of
training instances; in Section 3.2 we show that integrality generalizes from train to test data.

3.1 Integrality at Training

We first show that the relaxed training objective in Eq. (2), although designed to achieve high ac-
curacy, also induces integrality. In order to simplify notation we focus on a single training instance
and drop the index m. Denote the solutions to the relaxed and integer LPs as:

pr, = argmax ' p i = argmax ' p
pEML, HEML
pef0,1}4

Also, let z7 be the integral vector corresponding to the ground-truth output (). Now consider the
following decomposition:

0T (up — pr) = 0" (ur — pr) + 0" (s — pr) 3)

relaxed-hinge integrality gap exact-hinge

This equality states that the difference in scores between the relaxed optimum and ground-truth
(relaxed-hinge) can be written as a sum of the integrality gap and the difference in scores between
the exact optimum and the ground-truth (exact-hinge) (notice that all terms are non-negative). This
simple decomposition has several interesting implications.

First, we can immediately derive the following bound on the integrality gap:
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Where Eq. (7) is precisely the relaxed training objective from Eq. (2). Therefore, optimizing the
approximate training objective of Eq. (2) minimizes an upper bound on the integrality gap. Hence,
driving down the approximate objective also reduces the integrality gap of training instances. One
case where the integrality gap becomes zero is when the data is algorithmically separable (i.e., the
approximate loss is 0). In this case the relaxed-hinge term vanishes (the exact-hinge must also
vanish), and integrality is assured. However, the bound above might sometimes be loose. At the
same time, Eq. (4) provides a precise characterization of the integrality gap. Specifically, the gap
is determined by the difference between the relaxed-hinge and the exact-hinge terms. This implies
that even when the relaxed-hinge is not zero, we can still obtain a small gap if the exact-hinge is also
large. In fact, the only way to get a large integrality gap is by setting the exact-hinge much smaller
than the relaxed-hinge. But when can this happen?

To get a better understanding, a key insight is that the relaxed and exact hinge terms are closely re-
lated to the relaxed and exact training objectives (the latter additionally depend on the task loss A).
Intuitively, minimizing the training objective also minimizes the corresponding hinge term. Using
this intuition, we realize that with relaxed training, the relaxed-hinge is reduced, which consequently
reduces the exact-hinge (since it is an upper-bound). However, the training objective does not en-
courage reduction in the exact-hinge directly, so it is reasonable to expect that it would not be much
smaller than the relaxed-hinge. Therefore, relaxed training is likely to induce a small integrality
gap. We would like to point out that this kind of behavior is not guaranteed, and our explanation
merely serves to provide an intuition to what happens in practice. Indeed, it is possible to construct
a learning scenario where relaxed training obtains zero exact-hinge and non-zero relaxed-hinge, so
the relaxation is not tight in that case.

In contrast to relaxed training, the same intuition suggests that exact training may actually increase
the integrality gap. This might occur since it minimizes the exact-hinge (upper bounded by the exact



training objective) without also reducing the relaxed-hinge directly. This intuition is consistent with
previous empirical evidence. Specifically, Martins et al. (2009, Table 2) showed that training with
relaxed objective achieved 92.88% integral solutions, while exact training achieved only 83.47%
integral solutions on a dependency parsing problem. An even stronger effect was observed by Fin-
ley and Joachims (2008, Table 3) for multi-label classification, where relaxed training resulted in
99.57% integral instances, with exact training attaining only 17.7% (’Yeast’ dataset).

Finally, note that our derivation above (Eq. (4)) holds for any integral i, and not just the ground-
truth pp. In other words, the only property of ur we are using here is its integrality. Indeed, we
verify empirically (not shown) that training a model using random labels still attains the same level
of integrality as training with the ground-truth labels. This analysis suggests that integrality is not
related to accuracy of the predictor.

3.2 Generalization of Integrality

Our argument in Section 3.1 concerns only the integrality of train instances. However, the empirical
evidence discussed above pertains to test data. To bridge this gap, in this section we show that train
integrality implies test integrality. We do so by proving a generalization bound for integrality based
on Rademacher complexity.

We first define a loss function which measures the lack of integrality (or, fractionality). To this end,
we consider the discrete set of vertices of the local polytope M, (excluding its convex hull), denot-
ing by M’ and M¥ the sets of fully-integral and non-integral (i.e., fractional) vertices, respectively
so MI N MF = @, and MT U MF consists of all vertices of M). Next, let §, € RY be the
mapping from weights w and inputs x to scores (as used in Eq. (2)), and let I*(0) = max,, ¢ pqr A
and F*(0) = max, e pmr 67 11 be the best integral and fractional scores attainable, respectively. The
fractionality of § can be measured by the quantity”> D = F* — I*. If this quantity is large then the
LP has a fractional solution with a much better score than any integral solution. We can now define
the loss:

1 D>0

L(0) = . 8
©) {0 otherwise ®
That is, the loss equals 1 if and only if the optimal fractional solution has a (strictly) higher score
than the optimal integral solution.? In addition, we define a ramp loss parameterized by v > 0 which

upper bounds the fractionality loss:

0 D < —y
py(0)=S1+D/y —y<D<O, 9
1 D>0

Notice that for this loss to be zero, the best integral solution has to be better than the best fractional
solution by at least -y, which is a stronger requirement than mere tightness. We also point out that
¢~ (0) is generally hard to compute, as is £(6) (due to the discrete optimization involved in comput-
ing I* and F'*). However, here we are only interested in proving that integrality is a generalizing
property, so we will not worry about computational efficiency for now. We are now ready to state
the main theorem of this section (the proof is similar in spirit to the one in Weiss and Taskar (2010),
and relies on a general result from Bartlett and Mendelson (2002)).

Theorem 3.1. Let inputs be independently selected according to a probability measure P(X), and
let © be the class of all scoring functions Ox with ||w||y < B. Let ||¢(x, yc)||2 < R forall z, ¢, ye,

and q is the total number of factor assignments (dimension of ). Then for any number of samples
M and any 0 < § < 1, with probability at least 1 — 0§, every 0x € O satisfies:

. ¢*°BR 81n(2/6)
Ep[L(0x)] < Emlpy(0x)] + O ( Wx/M ) + i (10)

where £ is the empirical expectation. This theorem suggests that if we observe high integrality
(equivalently, low fractionality) on a finite sample of training data, then it is likely that integrality of
test data will not be much lower as the number of samples grows.

?In order to simplify notation we omit the dependence of I*, F™*, and D on 6.
3Notice that the loss will be 0 whenever the non-integral and integral optima are equal, but this is fine for
our purpose, since we consider the relaxation to be tight in this case.
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