
Epigraph proximal algorithms for general convex
programming

Matt Wytock, Po-Wei Wang and J. Zico Kolter
Machine Learning Department

Carnegie Mellon University
mwytock@cs.cmu.edu

Abstract

This work aims at partially bridging the gap between (generic but slow) “general-
purpose” convex solvers and (fast but constricted) “specialized” solvers. We de-
velop the Epsilon system, a solver capable of handling general convex problems
(inputs are specified directly as disciplined convex programs); however, instead
of transforming these problems to cone form, the compiler transforms them to a
higher-level “sum-of-prox” which can be solved via splitting methods, and which
maintains significantly more problem structure. To make such transformations
feasible for general convex problems, a key contribution is the development of
efficient proximal and epigraph projection operators a wide range of convex func-
tions. As we show, the resulting system improves substantially, often by an or-
der of magnitude or more, over CVXPY combined with the splitting cone solver
(SCS), a state-of-the art method for solving DCPs via their conic form.

1 Introduction

In convex optimization, there has long existed a dichotomy between “general-purpose” and “special-
ized” convex solvers. General-purposes solvers, such as those that solve general conic optimization
problems using interior point methods [7], can solve a very broad set of problems (particularly using
modeling frameworks such as those based upon disciplined convex programming [3]), but often do
not scale to large problems. Conversely, specialized algorithms are often orders of magnitude faster
than these general purpose solvers, but can be difficult to adapt to even slightly different problems.

In this paper, we take a step towards bridging this gap. We develop the Epsilon system and solver
framework, currently available as an open source library at http://epopt.io/. As with general
purpose solvers, Epsilon can solve a wide class of optimization problems: it takes as input any prob-
lems specified as a disciplined convex program. However, instead of then converting these problems
to conic form, as is done in existing DCP methods, we convert the problems to an intermediate
representation we call prox-affine form, a sum of functions that each have efficient proximal oper-
ators. This form maintains more structure in the original problem, and allows for efficient solvers
based upon operator splitting methods. A key innovation to the approach is that we define a broad
set of proximal operators, specifically including epigraph projections, that is sufficient to represent
any convex program expressable in current DCP modeling frameworks, without resorting to cone
form. As we show below, the resulting system is able to solve many standard problems an order
of magnitude faster (or more) than existing state-of-the-art solvers (even those already based upon
large-scale algorithms).

2 Background

Our work builds heavily upon two main lines of work: 1) DCP methods [3] and systems built
upon these methods; 2) proximal algorithms, specifically operating splitting algorithms like the

1

http://epopt.io/


ADD

SUM_SQUARES MULTIPLY

ADD lambda

NORM_P (p: 1)MULTIPLYNEGATE

A xb

Figure 1: Abstract syntax tree for lasso ‖Ax− b‖22 + λ‖x‖1.

alternating direction method of multipliers (ADMM) [1]. DCP methods allow users to construct
convex programs in an intuitive syntax by a set of compositions rules (which provide a calculus for
guaranteeing that a given problem is convex), and by a set of transformations that translate convex
or concave functions to a canonical cone form. CVX [4] and CVXPY [2] are two well-known
implementations of the DCP ruleset for the MATLAB and Python languages respectively, and we
use the native CVXPY problem representation as input to our system.

With respect to algorithms for solving convex problems, proximal-based methods have seen a surge
of interest in recent years. The proximal operator for a function f : Rn → R is defined as

proxf (v) = argmin
x

λf(x) +
1

2
‖x− v‖22. (1)

Several convex functions have simple closed form-solutions for their prox operator (see e.g. [6]),
which can be exploited when optimizing convex problems that involves these functions. ADMM is
one such algorithm that we will use below, but there are a wide range of similar algorithms.

3 The Epsilon compiler and algorithm

The main idea of Epsilon is that instead of reducing a general convex problem to conic form, we
reduce it to a set of functions with efficient proximal operators. Specifically, we reduce the opti-
mization problem to prox-affine form

minimize
x

N∑
i=1

fi(Hi(x)) (2)

where each fi◦Hi is “prox-friendly” in that there exists a efficient proximal operator for the function:
this include linear equalities, cone constraints, many convex functions, and epigraph projection, a
class of operators we introduce shortly. While this may appear difficult for general constraints and
function compositions, a key innovation of Epsilon is that we can implement a set of operators that
are sufficient for capturing the full generality of disciplined convex programs without resorting to
conic form.

Briefly, the compiler proceeds by recursively processing the abstract syntax tree corresponding to the
DCP objective and constraints (see Figure 1 for a simple example) and applying the transformation
rules (these are simplified slightly to ignore multiplicative scaling, but the intuition is similar):

1. If the expression is itself a prox-friendly function, we return.
2. If the expression is a sum of expressions, we recursively parse each one.
3. If the expression is a convex composition of two functions g(f(x)) for convex f , we intro-

duce the variable t, add the epigraph indicator I(f(x) ≤ t), and add the function g(t) (for
affine or concave f we equivalently add = or ≥ constraints).

After applying these transforms, the problem will be in the form of (2) above. Indeed, note that
traditional disciplined convex programming systems apply similar transformation to reduce every

2



problem to include only linear functions and cone constraints—our prox-affine representation simply
allows for a much richer set of operators.

Next, we further transform the problem to a separable prox-affine form by introducing new variables
and additional equality constraints, i.e.

minimize
x1,...,xn

N∑
i=1

fi(Hi(xi)) subject to

N∑
i=1

Ai(xi) = 0 (3)

where xi, . . . , xn are the optimization variables. In the simplest case, the Ai terms are consensus
constraints that enforce the xi variables to be multiple “copies” of the original x variables, but more
complex equality constraints can also be moved from indicator functions in the objective to direct
equality constraints in the Ai terms.

Finally, once the problem has been transformed to have a separable objective, we can solve it via
several potential splitting algorithms. In the current version of Epsilon, we solve the problem using
ADMM, which has the updates:

xk+1
i := argmin

xi

fi(Hi(xi)) +
1

2

∥∥∥∥∥∥
i−1∑
j=1

Aj(x
k+1
j ) +Ai(xi) +

N∑
j=i+1

Aj(x
k
j ) + uk

∥∥∥∥∥∥
2

2

uk+1 := uk +

N∑
i=1

Ai(x
k+1),

(4)

where the xi-update is handled using the proximal operator and where u denotes a set of (scaled)
dual variables.

Implementation of proximal and epigraph projection operators A key development in making
Epsilon an efficient yet fully general algorithm is to develop efficient proximal operators for all all
resulting terms in the prox-affine form. Due to the nature of the DCP formulation, when we perform
these reductions, many of the resulting constraints will be of the form: I(f(x) ≤ t), for some prox-
friendly function f and variable t. This is the indicator of an epigraph set E = {(x, t) | f(x) ≤ t},
and its corresponding proximal operator will be the projection onto this set:

proxI(v, s) = argmin
x,t

1

2
‖x− v‖22 +

1

2
(t− s)2 subject to f(x) ≤ t. (5)

While the epigraph projection is similar to the proximal operator (the dual function of (5) can be
expressed in terms of the proximal operator), it is seemingly more computationally involved to
compute in many cases. A key contribution of this work is the development of both proximal and
epigraph projection operators for many of the functions in the DCP ruleset, in particular often de-
veloping epigraph projection algorithms with the same computational complexity as their proximal
counterpart.

In particular, we develop proximal and epigraph algorithms for the following functions and their
sums: absolute value, square, hinge, deadzone, quantile loss, logistic, inverse positive, negative log,
exponential, negative entropy, KL divergence, quadratic over linear, max element, sum largest, `1
norm, `2 norm, `∞ norm, k-largest norm, log sum exp, least-squares, fused lasso, matrix operator
norm, trace norm, Frobenius norm, log det, matrix fractional, trace inverse, trace matrix exponential,
maximum eigenvalue, linear equalities (in addition to standard cone projections). To solve these
operators, we apply some mix of: 1) linear/quadratic/cubic solvers; 2) Newton method on the primal;
3) dual Newton method (when dual problem of epigraph projection has an explicit form); 4) primal-
dual Newton (for unconstrained primal problems) 5) implicit dual Newton (a novel algorithmic
development for the case with non-trivial constraints in primal problem where the dual has no closed
form); 6) quickselect sum-of-clip (a novel O(n) algorithm developed finding zero of a monotonic,
piecewise linear function). For the proximal and epigraph projection of matrix-variable functions
that are orthogonally invariant, the operator can be solved by using the SVD of input matrix and
then applying the corresponding operator to the singular values.

Example: Robust SVM. An “`∞” robust SVM can be written as the optimization problem

minimize
w

1

2
‖w‖22 + C

m∑
i=1

[
1− yi · wTxi + ‖PTw‖1

]
+

(6)

3



Epsilon CVXPY+SCS
Time Objective Time Objective

basis pursuit 2.96s 1.45× 102 16.99s 1.45× 102

covsel 0.77s 3.63× 102 23.50s 3.62× 102

group lasso 9.61s 1.61× 102 23.31s 1.61× 102

hinge l1 5.42s 1.50× 103 52.62s 1.50× 103

huber 0.51s 2.18× 103 3.39s 2.18× 103

lasso 3.88s 1.64× 101 22.02s 1.63× 101

least abs dev 0.38s 7.09× 103 3.81s 7.10× 103

logreg l1 4.84s 1.04× 103 55.53s 1.04× 103

lp 0.56s 7.77× 102 5.47s 7.75× 102

mnist 1.44s 1.53× 103 227.65s 1.60× 103

quantile 16.40s 3.64× 103 88.60s 4.99× 103

tv 1d 0.50s 2.13× 105 47.28s 3.51× 105

tv denoise 24.17s 1.15× 106 372.86s 1.69× 106

Table 1: Comparison of running time and objective value for Epsilon and CVXPY+SCS. Code for
problem definitions is available at http://epopt.io/.

where w is our optimization variable and [x]+ = max(0, x). This formulation is identical to the
standard SVM formulation except that each xi is itself an uncertain set xi+Pui for all ‖ui‖∞ ≤ 1.1
After transformation to prox-affine form and some simplifications, the problem takes on the form

minimize
w,z,t1,t2

1

2
‖w‖22+C[t1]++I(1−diag(y)Xw+ t21 = t1)+Iepi ‖·‖1(z, t2)+I(P

Tw = z) (7)

with optimization variables w ∈ Rn, z ∈ Rn, t1 ∈ Rm, t2 ∈ R. Each term here has an efficient prox
operator (including the epigraph projection for the `1 norm), so the above algorithm can be applied.
Though the above transformation seems complex in practice, the Epsilon compiler and algorithm
carries out all the steps involved with a simple set of rules.

4 Results

In this section we compare Epsilon to an existing approaches for general convex programming
based on transforming problems to cone form and using conic solvers. In particular, we compare to
CVXPY using the splitting cone solver (SCS) [5]. At a high level, both CVXPY+SCS and Epsilon
work similarly in that they reduce a disciplined convex problem to an intermediate representation
and apply a variant of ADMM. The difference is in the form of this intermediate representation
(prox-affine vs. cone program) and in the larger set of computational atoms available to Epsilon
(namely, the proximal operators described in Section 3) relative to the set of cone projections imple-
mented by SCS. In both systems the symbolic transformations are implemented in Python and the
backend numerical routines are written in C/C++.

The running times in Table 1 show that on all problem examples considered, Epsilon is faster than
CVXPY+SCS and often by a wide margin. While we use the default stopping criteria for both
systems, since they solve different intermediate representations using first-order methods, the objec-
tive values are not always identical. For most examples, the objective values are within a relative
tolerance of 10−2 with the exceptions being case in which Epsilon achieves a significantly lower
objective value (these typically are examples in which the problem is poorly-conditioned in cone
form). In general, we observe that Epsilon tends to solve problems in fewer ADMM iterations and
for many problems the iterations are faster due in part to operating on a smaller number of variables.

References
[1] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed opti-

mization and statistical learning via the alternating direction method of multipliers. Foundations
and Trends R© in Machine Learning, 3(1):1–122, 2011.

1This is usually formulated with uncertain defined by an `2 norm, but we describe an `∞ version specifically
to highlight the epigraph project operations separate from the traditional second order cone.

4

http://epopt.io/


[2] Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language for
convex optimization. 2015.

[3] Michael Grant, Stephen Boyd, and Yinyu Ye. Disciplined convex programming. Springer, 2006.
[4] Michael Grant, Stephen Boyd, and Yinyu Ye. CVX: Matlab software for disciplined convex

programming, 2008.
[5] Brendan O’Donoghue, Eric Chu, Neal Parikh, and Stephen Boyd. Operator splitting for conic

optimization via homogeneous self-dual embedding. arXiv preprint arXiv:1312.3039, 2013.
[6] Neal Parikh and Stephen Boyd. Proximal algorithms. Foundations and Trends in optimization,

1(3):123–231, 2013.
[7] Florian A Potra and Stephen J Wright. Interior-point methods. Journal of Computational and

Applied Mathematics, 124(1):281–302, 2000.

5


