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Abstract

This paper introduces Classification with Margin Constraints (CMC), a simple
generalization of cost-sensitive classification that unifies several learning settings.
In particular, we show that a CMC classifier can be used, out of the box, to solve
regression, quantile estimation, and several anomaly detection formulations. On
the one hand, our reductions to CMC are at the loss level: the optimization prob-
lem to solve under the equivalent CMC setting is exactly the same as the opti-
mization problem under the original (e.g. regression) setting. On the other hand,
due to the close relationship between CMC and standard binary classification, the
ideas proposed for efficient optimization in binary classification naturally extend
to CMC. As such, any improvement in CMC optimization immediately transfers
to the domains reduced to CMC, without the need for new derivations or pro-
grams. To our knowledge, this unified view has been overlooked by the existing
practice in the literature, where an optimization technique (such as SMO or PE-
GASOS) is first developed for binary classification and then extended to other
problem domains on a case-by-case basis. We demonstrate the flexibility of CMC
by reducing two recent anomaly detection and quantile learning methods to CMC.

1 Introduction

Modern machine learning algorithms are based on optimization, typically minimizing a loss func-
tion over the given data set, where the loss function evaluates the quality of the hypothesis being
learned. While the choice of the loss function naturally depends on the learning problem at hand
(e.g., classification, regression, density estimation, outlier detection, etc.) and the structure of the
hypothesis being learned, an important factor in choosing a loss function is the availability of an
efficient algorithm to solve the resulting optimization problem. As such, development of efficient
optimization methods has been a central problem in machine learning.

Due to the importance of binary classification, numerous papers have studied efficient optimization
procedures for classification, and in particular for Support Vector Machines (SVMs) [1–40]. See
also [41] and the references therein. As such, a large body of classifier training techniques currently
exists. To obtain efficient optimization methods for other learning problems, such as regression and
anomaly detection, an existing practice in the literature has been to extend optimization algorithms
for the binary classification to those other settings on a case-by-case basis. For examples, several pa-
pers propose to extend binary SVM optimization algorithms such as Sequential Minimal Optimiza-
tion (SMO) [10] or PEGASOS [42] to SVMs for regression and outlier detection [16,27,40,43–51].

In this paper, we argue that in contrast to the existing practice, optimization techniques could be
developed more efficiently by observing the relationship between the loss functions for different
learning settings. In particular, we introduce the problem of Classification with Margin Constraints
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(CMC), a slight generalization of the binary classification problem that sheds light on the relation-
ship between losses and algorithms for seemingly different learning settings. Specifically, we show
that diverse learning problems (including recent formulations for semi-supervised anomaly detec-
tion [52] or hierarchical quantile estimation [53]) reduce to CMC without changing the underlying
optimization problem. At the same time, due to the close relationship between CMC and binary clas-
sification, the optimization techniques designed for binary classification naturally work for CMC.
Thus, this paper shows that there is a sufficiently inclusive model for unified optimization in all of
these settings that removes the need for superficial extensions and redundant implementations.

The CMC problem is a generalization of example-dependent cost-sensitive classification, and in
particular classification with uneven margins. Learning with example-dependent loss functions [44,
54–63], and in particular SVMs with class-dependent margins [54, 56, 57, 59, 61] and inter-class
uneven margins [56] have been studied before. However, unlike previous work, the CMC problem
allows negative margins, which facilitates reductions from other learning settings.

The rest of this paper is organized as follows: Section 2 provides the formal definition of the CMC
problem. In Section 3, we show that regression using deviation-based losses reduces to CMC with
margin-based losses, and provide several examples. Section 4 considers CMC with the hinge loss
and reduces several SVM formulations, including the ν-SVM family of algorithms and SVMs for
unsupervised and semi-supervised anomaly detection, to the CMC problem with the hinge loss.
Section 5 concludes the paper and points to directions for future research.

2 Classification with margin constraints

As in binary classification, our goal in the CMC setting is to find a decision function that is positive
on positively-labeled examples and negative otherwise. However, in the CMC problem we specify
a lower (upper) bound on how positive (negative) the decision function has to be, i.e., we specify
margin sensitivities. Formally, we are given a set X , a class of functions F ⊂ {f |f : X 7→ R}, and
a data set (x1, y1, γ1), (x2, y2, γ2), . . . , (xn, yn, γn), where each example in the data set consists of
a data point xi ∈ X , a label yi ∈ {+1,−1}, and a margin sensitivity γi = (γi,0, γi,1, . . . , γi,d) ∈
R1+d, d ≥ 0. Our goal is to find a function f ∈ F and a vector ρ = (1, ρ1, ρ2, . . . , ρd) ∈ Rd+1

such that for all i = 1, 2, . . . , n, we have f(xi) ≥ ρ>γi when yi = +1 and f(xi) ≤ −ρ>γi when
yi = −1, or equivalently yif(xi) ≥ ρ>γi. More generally, we evaluate the quality of f and ρ by a
“loss function” ` : X × {+1,−1} × R × R 7→ R. Assuming that the data points are i.i.d. from an
unknown distribution PX,Y,Γ over X × {+1,−1} × Rd+1, we want to find f and ρ that minimize
the “classification risk”, defined as

Rcls
` (f, ρ, PX,Y,Γ) :=

∫
`(x, y, ρ>γ, f(x))dPX,Y,Γ = E

[
`
(
X,Y, ρ>Γ, f (X)

)]
, (1)

where (X,Y,Γ) are random variables jointly distributed with PX,Y,Γ 1. We denote the empirical
distribution underlying our data set by P̂n, and the associated empirical risk by

R̂cls
`,n(f, ρ) := Rcls

`

(
f, ρ, P̂n

)
= 1

n

n∑
i=1

`
(
xi, yi, ρ

>γi, f(xi)
)
.

3 Regression as CMC

In the regression problem, we are given a loss function ` : X × R× R 7→ R, and we are interested
in finding a function f : X 7→ R that minimizes the regression risk

Rreg
` (f, PX,Z) :=

∫
`(x, z, f(x))dPX,Z = E [`(X,Z, f(X))] , (2)

where PX,Z is the (unknown) distribution over X ×R generating the data, and (X,Z) PX,Z . In this
section we show that when ` is a deviation-based loss (defined below), we can reduces the regression
problem above to a CMC problem with d = 0 (i.e., real-valued γi). We start by two definitions.

1 In the following, we assume that every distribution we discuss is defined on a suitable sigma-field of the
corresponding sample space, and that all the functions we are considering are measurable.

2



Classification
Loss

φ(x, y,m) Shift
constant

ψ(x,m) Regression
Loss

Hinge loss
(φhinge)

max{1−m, 0} α+ = −ε+ 1,
α− = −ε− 1

max{|m| − ε, 0} ε-insensitive
loss

Weighted hinge
loss

{
τφhinge y = 1

(1− τ)φhinge o.w.
α+ = 1,
α− = −1

{
−τm m ≤ 0

(1− τ)m o.w.
τ -quantile
regression loss

Square loss (1−m)2 α+ = 1,
α− = −1

m2 Square loss

Truncated
square loss

(max{1−m, 0})2
α+ = 1,
α− = −1

m2 Square loss

Logistic loss log (1 + e−m) α+ = α− = 0 log
(

1 + e−m+em

2

)
Log-exp regres-
sion loss

Table 1: Examples of common classification losses and their corresponding regression loss. We
assume τ ∈ (0, 1) for quantile regression.

Definition 1 (Deviation-based loss). A regression loss ` : X ×R×R 7→ R is a deviation-based loss
if there exists a function ψ : X × R 7→ R such that `(x, z, t) = ψ(x, t− z) for all x ∈ X , z, t ∈ R.

Definition 2 (Margin-based loss). A loss function ` : X × {+1,−1} × R × R 7→ R for CMC
classification is a margin-based loss if there exists a function φ : X ×{+1,−1}×R 7→ R such that
`(x, y, s, t) = φ(x, y, yt− s) for all x ∈ X , y ∈ {+1,−1}, t, s ∈ R.

In the following, we identify deviation-based or margin-based losses with their corresponding func-
tions ψ and φ, e.g., we allow writingRcls

φ andRreg
ψ .

Next, we show that a CMC classifier for a margin-based loss φ can solve regression problems with
the deviation-based loss ψ(x,m) = 1

2φ(x, 1,m+ α+) + 1
2φ(x,−1,−m− α−), where α+ and α−

are any pair of constants. To see that, consider a regression sample (x1, z1), (x2, z2), . . . , (xn, zn).
Make a copy of the data points xi, and assign a positive label to all examples in the first copy
and a negative label to all examples in the second copy. More precisely, for i = 1, 2, . . . , n, let
x′i = x′i+n = xi, y′i = 1 and y′i+n = −1. Set the margin sensitivities to γ′i = zi − α+ and
γi+n = −zi + α−, i = 1, 2, . . . , n. Then, (x′1, y

′
1, γ
′
1), . . . , (x′2n, y

′
2n, z

′
2n) is a CMC data set, and

for every f , the empirical risk in ψ of f over the regression data set is equal to the empirical risk in
φ of f on the CMC data sets. This is not limited to the empirical risk, as the next Theorem shows2.

Theorem 1. Consider a distribution PX,Z over X × R and a deviation-based loss ψ. Suppose that
ψ(x,m) = 1

2ψ
+(x,m + α+) + 1

2ψ
−(x,−m − α−) for some functions ψ+ and ψ− and constants

α+ and α−. Define the margin-based classification loss φ as:

φ(x, y,m) =

{
ψ+(x,m), if y = 1;

ψ−(x,m), otherwise.
(3)

Then there exist a distribution PX,Y,Γ over X × {+1,−1} × R such that for all functions f ,

Rcls
φ (f, PX,Y,Γ) = Rreg

ψ (f, PX,Z) . (4)

Table 1 shows several regression losses and their corresponding CMC loss. This shows, for exam-
ple, that a CMC classifier using the weighted hinge loss can also solve SVM regression and quantile
estimation problems out of the box, without the need for new implementations3. Similarly, a classi-
fier using the truncated square loss can also do least-square regression. Interestingly, we also derive
a form of regression using a robust loss (the “log-exp” loss above) that reduces to logistic regression.

2Even more generally, ψ could be the sum of any number of scaled, mirrored and shifted copies of φ.
3Note that “copying” the data does not necessarily reduce efficiency. For example, the extension of SMO to

regression performs the exact same steps as when SMO for classification is applied with this reduction.
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SVM Formulation d µ ci γi

1-Class SVM for anomaly de-
tection [50]

d = 1 µ = (0, ν)> ci = 1 γi = (−1, 1)>

ν-SVM Classifier [65] d = 2 µ = (0, ν, 0)> ci = 1 γi = (−1, 1,−yi)>

Semi-supervised anomaly de-
tection (SSAD) [52]

d = 2 µ = (0, 1, κ)> ci =

{
ηu i ∈ U
ηl o.w.

γi =

{
(−1, 1, 0) i ∈ U
(−1, yi, 1) o.w.

Hierarchical Quantil Estima-
tion (q-OCSVM) [53]

d = q + 1 µ = (0, 1
q , . . . ,

1
q )> ci+nj = 1

qνj
γi+nj = (−1, 0, . . . , 1, 0, . . . )

Table 2: Examples of SVM formulations reduced to CMC with the hinge loss (problem (5)). In case
of SSAD, U indicates the set of unlabelled examples. For q-OCSVM, we create q copies of the data,
and index the j-th copy of xi as x′i+nj , where 0 ≤ j < q and 1 ≤ i ≤ n. In that case, γi+nj has a 1
at index j + 1. In the corresponding rows, q, νj , ν, κ, ηu and ηl are hyper-parameters.

4 CMC with the hinge loss and Support Vector Machines

In this section, we focus on CMC with the hinge loss, reducing several existing as well as new SVM
formulations to CMC 4. Consider the example-dependent cost-sensitive hinge loss for CMC,

`(x, y, ρ>γ, f(x)) = φ(x, y, yf(x)− ρ>γ) = c(x) max{1 + ρ>γ − yf(x), 0},

where c(x) ≥ 0 gives the scaling of the loss for data point x. Let ci := c(xi) denote the scale
of the loss for the i-th example in the data set. Different choices of γi and ci result in different
(existing and new) SVM formulations. For example, suppose that F is the set of linear functions
f(x) = w>x, where the `2-norm of w is regularized and the vector ρ is supposed to maximizes the
margin sensitivity 5. The corresponding CMC SVM optimization problem is

min
w,ρ

1

2
w>w − µ>ρ+

1

n

n∑
i=1

ci max{1 + ρ>γ − yf(x), 0}, (5)

where µ ∈ Rd can be thought of as a prior guess of the average margin sensitivity γ.

Note that (5) is not harder to solve than the standard ν-SVM classifier of [65], but several ν-SVM
formulations reduce to (5). Table 2 summarizes the choices of µ, γi and ci that result in some of
these reductions6. The bottom two rows show the reductions for two recently proposed methods: a
semi-supervised anomaly detection algorithm and a hierarchical quantile estimation method. Using
the reduction to CMC, efficient training will be immediately available for these (and possibly other)
new methods, simply by using an existing CMC classifier.

5 Conclusion and future work

We introduced the CMC problem, and showed that although CMC is only slightly different from
binary classification, several other learning settings reduce to CMC. The reductions result in exactly
the same optimization problems as those solved by the original method, but the CMC view enables us
to uniformly apply efficient optimizaiton ideas, especially those developed for binary classification.

The CMC problem is also interesting from a theoretical point of view. Given that the reductions are
at the risk level, an interesting question is whether these reductions could facilitate a unified analysis
of learning under these settings. Another interesting question is whether similar reductions exist for
other, more diverse learning settings such as clustering or for multi-class problems.

4In principle, we could do similar manipulations for other margin-based losses. We have chosen the hinge
loss since the rich body of SVM formulations allows us to better demonstrate the power of the CMC framework.

5Note that the reduction depends only on the loss, not the regularization of f or penalization of ρ; the
reduction works as long as the CMC classifier applies the same restrictions on f and ρ as the reduced problem.
For example, all results would remain true if we had instead used the “Extended ν-SVM” formulation [64].

6Other variants of ν-SVM, e.g., ν-SVM for regression and generalizations to parameteric-sensitivity mod-
els [65], as well as C-SVM formulations, are also special cases of (5), but are excluded for lack of space.
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[20] Gaëlle Loosli, Stéphane Canu, SVN Vishwanathan, and Alex Smola. Invariances in classifica-
tion: an efficient svm implementation. In ASMDA, 2005.

[21] Hsiang-Fu Yu, Cho-Jui Hsieh, Kai-Wei Chang, and Chih-Jen Lin. Large linear classifica-
tion when data cannot fit in memory. ACM Transactions on Knowledge Discovery from Data
(TKDD), 5(4):23, 2012.

[22] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. LIBLIN-
EAR : A library for large linear classification. The Journal of Machine Learning Research,
9:1871–1874, 2008.

[23] Thorsten Joachims. Making large-scale svm learning practical. Technical report, Technische
Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten
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