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Abstract

Many machine learning problems are parameterized by matrices with grouping
effect. In the ideal cases, such matrices will naturally have a block-diagonal struc-
ture after permutation of rows and columns. However, real data are often produced
with noise or perturbations. To learn robust parameter matrices, it is tempting to
pose constraints or regularization terms in the optimization formulations to en-
courage for block-diagonal structures. The question posed here is whether there
exists a generic way to induce block-diagonal structures for matrix-variable opti-
mization problems.

1 Introduction

Many machine learning models or related problems are driven by parameter matrices with special
grouping structures. Spectral clustering [1, 2, 3] and subspace learning [4, 5] aim at partitioning
samples according to certain spectral properties of the affinity matrix. When the affinity matrix is
close to block-diagonal, it has been shown that data points are tightly clustered in the eigenspace
spanned by the first few eigenvectors of the Laplacian matrix. Algorithms for kernel learning prob-
lems [6, 7] try to learn pairwise similarities between data points, solving optimization problems for
positive semidefinite matrices that typically addressed as kernel matrices. In covariance selection
problems that involve learning Gaussian graphical models [8, 9] we need to find implicit conditional
independence properties between covariates, resulting in a grouping structure in the covariance ma-
trix or the precision matrix. In optimization problems with group-sparsity regularizers [10, 11],
we need prior knowledge to divide features into groups before formulating the objective function.
Community detection models [12, 13] try to discover latent groupings from a network or a graph
represented as an affinity matrix.

For such problems, in the ideal cases where the underlying data can be well modeled without being
collapsed by noise, the parameter matrix will have an exactly block-diagonal structure after permu-
tation of rows and columns. Such block-diagonal parameterizations can benefit both computation
and storage.

However, in real scenarios we do not have noiseless data. According to previous study [14], the
main reason leading to the failure of spectral clustering on noisy data is that the block structure of
the affinity matrix is destroyed by noise. This poses challenges to the clustering community: how to
obtain correct clustering from noisy data, or further, how to obtain correct clustering from noisy data
and remove the noise. Aiming at recovering the underlying block-diagonal structure, it is natural to
ask whether we can find algorithms that are robust against noise, or furthermore, how to recognize
the noise so as to remove them.
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2 Open Problems

We assume that the related tasks can be parameterized by an affinity/similarity matrix A. Elements
of A are typically pairwise similarities between data points or features/covariates. Alternatively, the
parameters can be in the form of a self representation coefficient matrix Z ∈ Rn×n, which may be
asymmetric in general. This setting exists in tasks such as subspace segmentation. In this case, a
common way to form symmetric parametrization is to simply set A = (|Z|+ |Z>|)/2.

Since the desired block-diagonal structures will appear only for a few particular orderings of rows
and columns, in general we may not want to impose constraints directly over elements of the matri-
ces. Instead, we may prefer to operate on their spectral properties. More specifically, we can control
a matrix to be block-diagonal after permutation, via operating on its Laplacian matrixLA = DA−A,
where DA is a diagonal matrix of vertex degrees: DA = diag({di}), di =

∑
j Aij .

There exists a well known result on the relationship between the number of blocks and the graph
Laplacian of the matrix [15]:

Proposition. Let A be an affinity matrix. Then the multiplicity k of the eigenvalue 0 of the corre-
sponding Laplacian LA equals the number of connected components (i.e. blocks) in A.

Therefore, to induce block-diagonal structures, we only need to sparsify the eigenvalues of the
Laplacian.

Define Lap(A) := LA as an operator that maps an affinity matrix A to its Laplacian.

Open Problem 1 (Regularization on Laplacian eigenvalues). Is is possible to find a regularizer
R : Rn×n 7→ R+ such that there exist algorithms that can efficiently find a local/global minimum
of the optimization problem:

min
A

L(A) + λR(Lap(A)), (1)

where L is a task-specific loss function that is possibly nonconvex or nonsmooth?

The first idea is to simultaneously minimize the rank of LA as well as the loss function L. Since
exact rank minimization is in general NP-hard, we may choose R(A) = ‖Lap(A)‖∗, i.e. the trace
norm of LA. This is the convex surrogate for directly minimizing the rank of LA. Natural coming-
up problems are how can we solve such problems and under which conditions are we guaranteed to
find the solutions.

Open Problem 2 (Sufficient conditions for guaranteed solutions). How can we solve Problem 1 with
the trace norm regularizer R(A) = ‖Lap(A)‖∗ and under which conditions on the loss function L
are we guaranteed to find a local/global minimum efficiently?

3 Related Recent Progress

Currently related progress for inducing block-diagonal structures exists only for specific tasks, typ-
ically with the most commonly used regularizers. Some of the task-specific properties have been
utilized, which make the conclusions not generalizable to the more general optimization scenarios.

3.1 Block-diagonal Covariance Selection

For the specific context of graphical lasso estimation, some independent findings [16, 17] have
noticed that the block-diagonal structure of the precision matrix is determined by the block-diagonal
structure of the thresholded empirical covariance matrix. For a given level of regularization λ, the
original optimization problem (where S denotes the sample covariance matrix)

min
Θ�0

− log det(Θ) + tr(SΘ) + λ‖Θ‖`1 (2)

can be solved with a simple procedure to induce block-diagonal solutions. First, the absolute values
of the sample covariance matrix is thresholded at λ and set the thresholded matrix as an affinity ma-
trix to detect strongly connected components. Then the original problem (2) is solved via separately
maximizing the penalized log-likelihood on each component (block of covariates).
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Abstract

The subspace segmentation problem is addressed in this
paper by effectively constructing an exactly block-diagonal
sample affinity matrix. The block-diagonal structure is
heavily desired for accurate sample clustering but is rather
difficult to obtain. Most current state-of-the-art subspace
segmentation methods (such as SSC [4] and LRR [12]) re-
sort to alternative structural priors (such as sparseness and
low-rankness) to construct the affinity matrix. In this work,
we directly pursue the block-diagonal structure by propos-
ing a graph Laplacian constraint based formulation, and
then develop an efficient stochastic subgradient algorithm
for optimization. Moreover, two new subspace segmenta-
tion methods, the block-diagonal SSC and LRR, are devised
in this work. To the best of our knowledge, this is the first
research attempt to explicitly pursue such a block-diagonal
structure. Extensive experiments on face clustering, motion
segmentation and graph construction for semi-supervised
learning clearly demonstrate the superiority of our novelly
proposed subspace segmentation methods.

1. Introduction

High-dimensional vision data, such as face images and
rigid object motion trajectories, are generally distributed in
a union of multiple low-dimensional subspaces [8, 21, 25].
To find such a low-dimensional structure, we usually need
to cluster the data into multiple groups and meanwhile fit
each group by a subspace. This introduces the important
subspace segmentation problem defined as follows.

Definition 1 (Subspace Segmentation [22]). Given a set of
sample vectors X = [X1, . . . , Xk] = [x1, . . . , xn] ∈ Rd×n
drawn from a union of k subspaces {Si}ki=1. Let Xi be a
collection of ni samples drawn from the subspace Si, n =∑k
i=1 ni. The task of subspace segmentation is to segment

∗Corresponding author.

(a) Sparse (b) Low-rank (c) Block-diagonal 

Figure 1. An illustrative comparison on the constructed sample
affinity matrices for synthetic noisy samples from 4 subspaces, us-
ing different priors: (a) sparse, (b) low-rank, and (c) our proposed
block-diagonal. The block-diagonal affinity matrix characterizes
the sample clusters and subspace segmentation more accurately.

the samples according to the underlying subspaces they are
drawn from.

Recently, many spectral clustering based solutions to the
subspace segmentation problem have been proposed [4, 12,
13]. These methods use local or global information around
each sample to build a sample affinity matrix. The segmen-
tation of the samples is then obtained by applying spectral
clustering [15] on the affinity matrix.

In particular, Sparse Subspace Clustering (SSC) [4] and
Low-Rank Representation (LRR) [12], as two examples of
the state-of-the-art subspace segmentation methods, con-
struct the affinity matrix through finding a sparse or low-
rank linear representation of each sample with respect to
the whole sample collection. The obtained representation
coefficients are then used directly to build the affinity ma-
trix. These methods are able to generate a block-diagonal
affinity matrix under restrictive conditions. However, the
block-diagonal structure obtained by those methods is frag-
ile and will be destroyed when the signal noise ratio is
small, the different subspaces are too close, or the subspaces
are not independent. Hence the subspace segmentation per-
formance may be degraded severely [19].

In this work, we propose to explicitly pursue such a
block-diagonal structured affinity matrix for subspace seg-
mentation. We impose an explicit fixed rank constraint on
the graph Laplacian, which can equivalently constrain the
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Figure 1: Grouping effects from different regularization settings. Image adapted from [19].

3.2 Subspace Clustering with Block-diagonal Affinity Matrices

Many related studies to enforce block-diagonal structures exist in the context of subspace segmenta-
tion. The task is formulated to pursue a sparse representation coefficient matrix Z given data matrix
X by solving an optimization problem:

min
Z

‖Z‖α +
λ

2
‖X −XZ‖2F , s.t. diag(Z) = 0, (3)

where α = 1 or ∗ corresponds to sparse subspace clustering (SSC) [4] or low-rank representation
(LRR) [5], respectively.

For sparse subspace clustering and low-rank representation models, it has been shown that the opti-
mal solution matrix is block-diagonal under ideal conditions. Lu et al. [18] proposed the enforced
block diagonal conditions, showing that any regularization term that satisfies these conditions will
lead to a block-diagonal optimal solution. Unfortunately the analysis only holds for the most ideal
cases where the data points are noiseless and subspaces are independent, while the open problem
described in this paper is to guide the optimization process towards a block-diagonal solution given
noisy or perturbed data.

Perhaps the most related attempt is the recent work [19] that tried to explicitly enforce block-
diagonal structures. In that work, the authors imposed a fixed rank constraint on the graph Laplacian
by restricting the solutions from what they called the k-block-diagonal-matrix set (k-BDMS):

K = {Z|rank(LA) = n− k,A = (|Z|+ |Z>|)/2}. (4)

In the above constraint set, the parameter k is the pre-specified number of subspaces. After building
k block diagonal affinity matrix, the samples are readily segmented into k clusters.

The authors then employed the stochastic sub-gradient method to solve the optimization problems
with the k-BDMS constraint. The key step is a projection onto k-BDMS, which was implemented
with the augmented Lagrangian method (ALM) that leads to an iterative inner sub-procedure.

Figure 1 (adapted from [19] with permission) shows an illustrative comparison on synthetic noisy
affinity matrices from 4 subspaces using different regularization settings: (a) `1 sparse regularization
(SSC); (b) trace norm ‖ · ‖∗ (LRR); (c) block-diagonal constraint (k-BDMS).

The optimization problems involving k-BDMS are heavily nonconvex. Fortunately, it has been
proved for both SSC and LRR that the simple stochastic sub-gradient method converges to the
global optimum.

The most difficult part to generalize this methodology to other tasks is that the value of k needs to be
specified before solving the optimization problem. We do not know the number of hidden clusters
or groups in general settings. We cannot specify the level of sparsity of Laplacian eigenvalues, or
equivalently the rank of Laplacian in advance 1.

Another issue is that the provable optimality guarantees are established only for specific cases: `2
loss for self representation and normal sparsity-inducing regularizers (`1 for SSC and nuclear norm
for LRR). We don’t know how these results will change in general settings from various tasks.
Meanwhile, iteratively calling the ALM subprocedure to project current solution onto the k-block-
diagonal-matrix set can make this optimization process difficult to be sufficiently scalable when
applied to larger scale of data.

1This is analogous to sparsity-inducing regularization, where we typically do not have enough information
to explicitly specify the number of non-zero elements in the final solution.
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