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Abstract

We consider the problem of minimizing an objective function that is a sum of
convex functions. For large sums, batch methods suffer from a prohibitive per-
iteration complexity, and are outperformed by incremental methods such as the
recent variance-reduced stochastic gradient methods (e.g. SVRG). In this paper,
we propose to improve the performance of SVRG by incorporating approximate
curvature information while maintaining a per-iteration complexity that is linear
in the dimension. An option which we find to perform remarkably, is to com-
bine SVRG with LBFGS updates, in a manner that is different from existing ap-
proaches. Numerical experiments on real datasets demonstrate the improvements
due to proper utilization of approximate second-order information.

1 Introduction

We consider the problem of minimizing a strongly-convex objective function that is the sum of n
smooth convex functions,

minimize
w∈Rp

{
φ(w) ,

1

n

n∑
i=1

φi(w)

}
, (1)

a common example of this situation being regularized empirical risk minimization (e.g. φi(w) =
`(aTi w) + λ

2 ‖w‖
2 for some loss function `(·)). We mainly focus on the regime n � p � 1. In

this regime, even first-order batch methods like gradient descent that have per-iteration complexity
O(np) become computationally burdensome. As a result, incremental/stochastic methods with per-
iteration complexity O(p) such as stochastic gradient (SGD) are of interest. The problem of slow
convergence of SGD due to high variance of the gradient estimate has been addressed successfully
by the recent development of various variance-reducing stochastic gradient methods such as SVRG
[8], SAG [13], SDCA [15] and Nesterov-accelerated counterparts [14, 17, 9], resulting in linear
convergence1. Some of these methods require the functions φi(·) to have a specific structure, but we
do not need to make these assumptions.

Naturally, there have also been quite a few recent works that aim to accelerate convergence of
stochastic methods by incorporating curvature information [3, 4, 16, 10, 11], while maintaining
a per-iteration complexity of O(p). Note that [16] suffers from a high memory requirement and ex-
pensive per-iteration complexity. The recent works [11, 10] are closely related to ours. These works

1Note that the convergence here is with respect to the point achieving the minimum of (1), i.e. we focus on
minimizing the training error.

1



propose to combine SVRG with frequent limited-memory BFGS (LBFGS) updates of the Hessian
estimate, either by making use of differences in stochastic gradients or subsampled-Hessian-vector
products. However, the noise injected while estimating the differences between gradients results in
inaccurate curvature estimates that can compromise the performance of these algorithms, especially
when improvement in objective can be attained only by moving in low curvature directions. This
is because the resulting curvature estimates in the low curvature directions end up being dominated
by the noise. We instead propose to perform an LBFGS update only at the beginning of the SVRG-
epoch, using the full gradients. Although this leads to less frequent updates of the approximate
Hessian, we observe that it results in more stable and much faster convergence.

Another approach that we experiment with is to incorporate curvature information via periodic
computations of a subsampled Hessian (only once per epoch). The use of a subsampled Hessian
has indeed been proposed previously [3], where some iterations of the CG method are used to ap-
proximately compute the product of inverse of the subsampled Hessian and the stochastic gradient.
However, as noted in the recent work [6], a subsampled Hessian is able to capture accurate infor-
mation only about the high curvature directions. Due to inaccuracies in estimating the curvature in
the low curvature directions, the authors in [6] proposed thresholding the low singular values to a
higher value in order to stabilize the estimate, resulting in conservative moves in the estimated low-
curvature directions. Specifically, if σ1, σ2, . . . , σp denote the singular values of the subsampled
Hessian in descending order, the singular values σr+1, σr+2, . . . , σp are all set to σr+1, where r is
chosen to be some small number. Other forms of shrinkage/thresholding can also be employed for
the purpose of stabilizing the estimate, possibly using fewer computations, however we observe in
this paper that this particular form has the desirable benefits that the inverse of the thresholded matrix
can be obtained immediately and furthermore can be stored in only O(rp) memory, by representing
it in a compact manner (outer-product plus diagonal). This also means that the search direction can
be obtained in O(rp) time, thus the memory and computational requirements are comparable with
stochastic first-order and quasi-Newton methods.

A sketch of the proof of convergence of the two approaches is presented in Section 3. Experimental
results on real datasets are presented in Section 4.

2 Formal Setup and Algorithm

We assume that each function φi(·) is L-smooth, while the overall objective function φ(·) is γ-
strongly convex, both with respect to the L2 norm. The pseudo-code of the algorithm is provided
in the box Algorithm 1. Note that the matrix Ĥz appearing in the zth epoch is not specified in the
pseudo-code. We provide the following two options for Ĥz:

- SVRG+I: Subsampled Hessian followed by singular value thresholding
Sample a set S of S indices, and choose

Ĥ−1z = Q

(
Σ−1r −

1

σr+1
Ir

)
Q′ +

1

σr+1
Ip,

where Σr is a diagonal matrix containing the top r singular values of the subsampled Hessian
1
S

∑
i∈S∇2φi(w̃s), the matrix Q ∈ Rp×r contains its top r singular vectors.2 This operation

sets Ĥz as the subsampled Hessian whose singular values from σr+2 to σp are set to be equal to
σr+1. Due to the structure of Ĥ−1z (outer-product plus diagonal), the update step that involves
computing Ĥ−1z vt can be performed in O(rp) time. The computations required for the subsam-
pling and thresholding operation, performed once in each epoch, are O(rp2) using e.g. [7] (the
randomized methods mentioned therein are parallelizable). Thus, thresholding has the double
benefits of stabilizing the Hessian estimate and reducing storage, allowing the computation of the
search direction in O(rp) time, same as that of stochastic first-order and quasi-Newton methods.

- SVRG+II: LBFGS
For this option, we define Ĥ−1z implicitly via the popular LBFGS method, i.e. at the beginning

2In this case, the left and right singular vectors are the same, since the subsampled Hessian is a real sym-
metric matrix.
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of each epoch when the full gradient µ̃z is computed, we define

sz−1 , w̃z − w̃z−1, yz−1 , µ̃z − µ̃z−1,
following which each update step in the epoch is computed using the two-loop procedure pro-
vided in [12, Algorithm 7.4].

We point out that the matrix Ĥz is fixed throughout an epoch.

Algorithm 1: SVRG + second-order information
Data: {φi(·)}ni=1, initial w0, inner iterations m
Result: w
w ← w0, w̃1 ← w0

for z = 1, 2, . . . do
µ̃z ← 1

n

∑n
i=1∇φi(w̃z)

Choose Ĥz

for t = 1 to m do
Sample it from [1 : n] uniformly at random
vt ← ∇φit(w)−∇φit(w̃z) + µ̃z
w ← w − ηzĤ−1z vt

end
w̃z+1 ← w

end

3 Convergence Results

Let Ĥz denote the scaling matrix used in epoch z and w = Ĥ
1/2
z w denote the transformed

parameter under the operator Ĥz . Let ψi denote the function under this transformation, i.e.,
ψi(w) = φi

(
Ĥ
−1/2
z w

)
. Epoch z of Algorithm 1 effectively applies the vanilla SVRG to opti-

mize the function 1
n

∑n
i=1 ψi(w). The reader is referred to [2, Section 9.4.1] for a discussion on this

in the context of gradient descent. Combining the analysis in [8] with the coordinate transformation
provides us with the following per-epoch bound

E[φ(w̃z+1)− φ(w∗)] ≤
(

1

γψηz(1− 2ηzLψ)m
+

2ηzLψ
1− 2ηzLψ

)
E[φ(w̃z)− φ(w∗)],

where γψ is the strong-convexity parameter of the function ψ and Lψ is the largest of the smoothness
parameters of the new functions ψi. So linear convergence can be established if one can prove an
upper bound on Lψ and a lower bound on γψ , followed by choosing a step size of ηz = O(1/Lψ)
and a sufficiently large m = Θ(Lψ/γψ), although the convergence rate obtained from such a bound
can possibly be a very conservative estimate of the rate achievable in practice. For SVRG+II, the
proof presented in [11] applies with little change. For SVRG+I, we have the following lemma, the
proof of which employs the matrix Hoeffding inequality, and is skipped due to space constraints.
Lemma 1. We have Lψ ≤ L

γ−O
(√

log p
S

) and γψ ≥ γ

L+O
(√

log p
S

) .

4 Experimental Results

The initial point is chosen to be all-zeros. We compare the performance of algorithms based on the
log of suboptimality in function value vs number of passes through the data. For SVRG+I, the initial
computations in each epoch required for the subsampling and rank-thresholding operations, normal-
ized by the computations required for one pass through the data, are O(rp2/(np)) = O(rp/n),
which is negligible in the n� p regime. We also remark here that these initial computations in each
epoch (computing full gradient, subsampled and thresholded Hessian) are heavily parallelizable. We
aim to perform L2-regularized logistic regression, with regularization λ = 10−4:

minimize
w∈Rp

{
1

n

n∑
i=1

log(1 + e−bia
T
i w) +

λ

2
‖w‖2

}
.
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We compare the two approaches described in the previous section (referred to as SVRG+I
and SVRG+II respectively) with plain SVRG, stochastic-LBFGS method from [11] (denoted as
SLBFGS) and batch-LBFGS. The first epoch of SVRG+II is run as an epoch of SVRG. The thresh-
old for SVRG+I and the LBFGS memory parameter for SVRG+II, SLBFGS, batch-LBFGS are
all set to be 20. The step-size for each stochastic method was chosen to be the one from the
set {10−1, 10−2, 10−3, 10−4, 10−5, 10−6} that resulted in fastest and relatively stable convergence.
Each epoch for SVRG, SVRG+I, SVRG+II and batch-LBFGS is counted as 2 passes over the data,
while each epoch in SLBFGS (using parameter choices recommended in [11]) is counted as 3 passes.

We find in our experiments that the convergence rate of SVRG+I is not much higher than plain
SVRG or SLBFGS. However, for all datasets, SVRG+II is by far the fastest in achieving a high
accuracy solution. Though SVRG+II updates the Hessian approximation much less frequently than
SLBFGS, the disadvantage of using an outdated approximation seems to be overcome significantly
due to the use of exact gradient differences.

Dataset n p Dataset n p Dataset n p
mnist 60000 717 covtype 581012 54 Protein 145751 74

Table 1: Datasets used in experiments, obtained from [5] and the KDD cup 2004 website [1]
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Figure 1: Log-suboptimality vs number of passes through the data for (a) mnist dataset, (b) covtype
dataset, (c) Protein dataset

5 Extensions

Weighted sampling and optimization of minibatch size can be incorporated for further performance
improvements. Extending the proposed approach to handle the presence of a non-smooth function
via a proximal step should also be of interest. Finally, effects on test error remain to be investigated.
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