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Abstract

Stochastic gradient algorithms have been the main focus of large-scale learning problems and led to im-
portant successes in machine learning. The convergence of SGD depends on the careful choice of learning
rate and the amount of the noise in stochastic estimates of the gradients. In this paper, we propose a new
adaptive learning rate algorithm, which utilizes curvature information for automatically tuning the learning
rates. The information about the element-wise curvature of the loss function is estimated from the local
statistics of the stochastic first order gradients. We further propose a new variance reduction technique to
speed up the convergence. In our experiments with deep neural networks, we obtained better performance
compared to the popular stochastic gradient algorithms.

1 Introduction

In this paper, we develop a stochastic gradient algorithm that reduces the burden of extensive hyper-parameter search for the
optimization algorithm. The proposed algorithm exploits a low variance estimator of curvature of the cost function and uses
it to obtain an automatically tuned adaptive learning rate for each parameter.

In the deep learning and numerical optimization, several papers suggest using a diagonal approximation of the Hessian (second
derivative matrix of the cost function with respect to parameters), in order to estimate optimal learning rates for stochastic
gradient descent over high dimensional parameter spaces [3, 14, 9]. A fundamental advantage of using such approximation
is that inverting it is a trivial and cheap operation. However generally, for neural networks, the inverse of the diagonal
Hessian is usually a bad approximation of the diagonal of the inverse of Hessian. Examples options of obtaining a diagonal
approximation of Hessian are the Gauss-Newton matrix [10] or by finite differences [13]. Such estimations may however be
sensitive to noise due to the stochastic gradient. [14] suggested a reliable way to estimate the local curvature in the stochastic
setting by keeping track of the variance and average of the gradients.

In this paper, we followed a different approach: instead of using a diagonal estimate of Hessian, we proposed to estimate
curvature along the direction of the gradient and we apply a new variance reduction technique to compute it reliably. By using
root mean square statistics, the variance of gradients are reduced adaptively with a simple transformation. We keep track
of the estimation of curvature using a technique similar to that proposed by [14], which uses the variability of the expected
loss. Standard adaptive learning rate algorithms only scale the gradients, but regular Newton-like second order methods, can
perform more complicate transformations, e.g. rotating the gradient vector. Newton and quasi-newton methods can also be
invariant to affine transformations in the parameter space. Our proposed Adasecant algorithm is basically a stochastic rank-1
quasi-Newton method. But in comparison with other adaptive learning algorithms, instead of just scaling the gradient of each
parameter, Adasecant can also perform an affine transformation on them.
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2 Directional Secant Approximation

Directional Newton is a method proposed for solving equations with multiple variables [11]. The advantage of directional
Newton method proposed in [11], compared to Newton’s method is that, it does not require a matrix inversion and still
maintains a quadratic rate of convergence.

In this paper, we developed a second-order directional Newton method for nonlinear optimization. Step-size tk of update ∆k

for step k can be written as if it was a diagonal matrix:

∆k = tk �∇θf(θk) = diag(tk)∇θf(θk) = − diag(dk)(diag(Hdk))−1∇θf(θk) (1)

where θk is the parameter vector at update k, f is the objective function and dk is a unit vector of direction that the optimization
algorithm should follow. Denoting by hi = ∇θ

∂f(θk)
∂θi

the ith row of the Hessian matrix H and by ∇θi
f(θk) the ith element

of the gradient vector at update k, a reformulation of Equation 1 for each diagonal element of the step-size diag(tk) is:

∆k
i = −tki∇θi f(θ

k) = −dki
∇θi

f(θk)

hki d
k

, so effectively tki =
dki

hki d
k

(2)

We can approximate the per-parameter learning rate tki following [1]:

tki =
dki

hki d
k
≈ tki d

k
i

∇θi
f(θk + tkdk)−∇θi

f(θk)
(3)

Please note that alternatively one might use the R-op to compute the Hessian-vector product for the denominator in Equation
3 [15].

To choose a good direction dk in the stochastic setting, we use a block-normalized gradient vector for each weight matrix

Wi
k and bias vector bik where θ =

{
Wi

k,b
i
k

}
i=1···k at each layer i and update k, i.e. dk

Wi
k

=
∇

Wi
k

f(θ)

||∇
Wi

k
f(θ)||2 and dk =[

dk
W0

k
dk
b0

k
· · ·dk

bl
k

]
for a neural network with l layers. Block normalization of the gradient adds an additional noise, but in

practice we did not observe any negative impact of it. We conjecture that this is due to the angle between the stochastic
gradient and the block-normalized gradient still being less than 90 degrees. The update step is defined as ∆k

i = tki d
k
i . The

per-parameter learning rate tki can be estimated with the finite difference approximation,

tki =
∆k
i

∇θi f(θ
k + ∆k)−∇θi f(θ

k)
, (4)

since, in the vicinity of the quadratic local minima,

∇θf(θk + ∆k)−∇θf(θk) ≈ Hk∆k (5)

We can therefore recover tk as
tk = diag(∆k)(diag(Hk∆k))−1. (6)

The directional secant method basically scales the gradient of each parameter with the curvature along the direction of the
gradient vector and it is numerically stable.

3 Variance Reduction for Robust Stochastic Gradient Descent

Variance reduction techniques for stochastic gradient estimators have been well-studied in the machine learning literature.
Both [16] and [8] proposed new ways of dealing with this problem. In this paper, we proposed a new variance reduction
technique for stochastic gradient descent that relies only on basic statistics related to the gradient. Let gi refer to the ith
element of the gradient vector g with respect to the parameters θ and E[·] be an expectation taken over minibatches and
different trajectories of parameters.

We propose to apply the following transformation to reduce the variance of the stochastic gradients:

g̃i =
gi + γiE[gi]

1 + γi
(7)

where γi is strictly a positive real number. Let us note that:

E[g̃i] = E[gi] and Var(g̃i) =
1

(1 + γi)2
Var(gi) (8)
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So variance is reduced by a factor of (1 + γi)
2 compared to Var(gi). In practice we do not have access to E[gi], therefore a

biased estimator gi based on past values of gi will be used instead. We can rewrite the g̃i as:

g̃i =
1

1 + γi
gi + (1− 1

1 + γi
)E[gi] (9)

After substitution βi = 1
1+γi

, we will have:
g̃i = βigi + (1− βi)E[gi] (10)

By adapting γi or βi, it is possible to control the influence of high variance, unbiased gi and low variance, biased gi on g̃i.
Denoting by g′ the stochastic gradient obtained on the next minibatch, the γi that well balances those two influences is the
one that keeps the g̃i as close as possible to the true gradient E[g′i] with g′i being the only sample of E[g′i] available:

arg min
βi

E[||g̃i − g′i||22] (11)

It can be shown that this a convex problem in βi with a closed-form solution (details in appendix) and we can obtain the γi
from it:

γi =
E[(gi − g′i)(gi − E[gi])]

E[(gi − E[gi])(gi′ − E[gi]))]
(12)

As a result, in order to estimate γ for each dimension, we keep track of a estimation of E[(gi−g′i)(gi−E[gi])]
E[(gi−E[gi])(g′i−E[gi]))]

during training.
The necessary and sufficient condition here, for the variance reduction is to keep γ positive, to achieve a positive estimate of
γ we used the root mean square statistics for the expectations.

4 Adaptive Step-size in Stochastic Case

In the stochastic gradient case, the step-size of the directional secant can be computed by using an expectation over the
minibatches:

Ek[ti] = Ek[
∆k
i

∇θi
f(θk + ∆k)−∇θi

f(θk)
] (13)

The Ek[·] that is used to compute the secant update, is taken over the minibatches at the past values of the parameters.

Computing the expectation in Eq 13 was numerically unstable in stochastic setting. We decided to use a more stable second
order Taylor approximation of Equation 13 around (

√
Ek[(αki )2],

√
Ek[(∆k

i )2]), with αki = ∇θi f(θ
k + ∆k) − ∇θi f(θ

k).
Assuming

√
Ek[(αki )2] ≈ Ek[αki ] and

√
Ek[(∆k

i )2] ≈ Ek[∆k
i ] we obtain always non-negative approximation of Ek[ti]:

Ek[ti] ≈
√

Ek[(∆k
i )2]√

Ek[(αki )2]
− Cov(αki ,∆

k
i )

Ek[(αki )2]
(14)

In our experiments, we used a simpler approximation, which in practice worked as well as formulations in Eq 14:

Ek[ti] ≈
√

Ek[(∆k
i )2]√

Ek[(αki )2]
− Ek[αki ∆k

i ]

Ek[(αki )2]
(15)

5 Algorithmic Details

5.1 Approximate Variability

To compute the moving averages as also adopted by [14], we used an algorithm to dynamically decide the time constant based
on the step size being taken. As a result algorithm that we used will give bigger weights to the updates that have large step-size
and smaller weights to the updates that have smaller step-size.

By assuming that ∆̄i[k] ≈ E[∆i]k, the moving average update rule for ∆̄i[k] can be written as,

∆̄2
i [k] = (1 − τ−1i [k])∆̄2

i [k − 1] + τ−1i [k](tki g̃
k
i ), and ∆̄i[k] =

√
∆̄2
i [k] (16)

This rule for each update assigns a different weight to each element of the gradient vector . At each iteration a scalar multipli-
cation with τ−1i is performed and τi is adapted using the following equation:

τi[k] = (1 −
E[∆i]

2
k−1

E[(∆i)2]k−1
)τi[k − 1] + 1 (17)
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5.2 Outlier Gradient Detection

Our algorithm is very similar to [13], but instead of incrementing τi[t + 1] when an outlier is detected, the time-constant is
reset to 2.2. Note that when τi[t + 1] ≈ 2, this assigns approximately the same amount of weight to the current and the
average of previous observations. This mechanism made learning more stable, because without it outlier gradients saturate τi
to a large value.

5.3 Variance Reduction

The correction parameters γi (Eq 12) allows for a fine-grained variance reduction for each parameter independently. The
noise in the stochastic gradient methods can have advantages both in terms of generalization and optimization. It introduces
an exploration and exploitation trade-off, which can be controlled by upper bounding the values of γi with a value ρi, so that
thresholded γ′i = min(ρi, γi).

We block-wise normalized the gradients of each weight matrix and bias vectors in g to compute the g̃ as described in Section 2.
That makes Adasecant scale-invariant, thus more robust to the scale of the inputs and the number of the layers of the network.
We observed empirically that it was easier to train very deep neural networks with block normalized gradient descent.

6 Improving Convergence

Classical convergence results for SGD are based on the conditions:∑
i

(η(i))2 <∞ and
∑
i

η(i) =∞ (18)

such that the learning rate η(i) should decrease [12]. Due to the noise in the estimation of adaptive step-sizes for Adasecant,
the convergence would not be guaranteed. To ensure it, we developed a new variant of Adagrad [4] with thresholding, such
that each scaling factor is lower bounded by 1. Assuming aki is the accumulated norm of all past gradients for ith parameter
at update k, it is thresholded from below ensuring that the algorithm will converge:

aki =

√√√√ k∑
j=0

(gji )
2 and ρki = maximum(1, aki ) giving ∆k

i =
1

ρi
ηki g̃

k
i (19)

In the initial stages of training, accumulated norm of the per-parameter gradients can be less than 1. If the accumulated per-
parameter norm of a gradient is less than 1, Adagrad will augment the learning-rate determined by Adasecant for that update,
i.e. ηki

ρki
> ηki where ηki = Ek[tki ] is the per-parameter learning rate determined by Adasecant. This behavior tends to create

unstabilities during the training with Adasecant. Our modification of the Adagrad algorithm is to ensure that, it will reduce
the learning rate determined by the Adasecant algorithm at each update, i.e. ηki

ρki
≤ ηki and the learning rate will be bounded.

At the beginning of the training, parameters of a neural network can get 0-valued gradients, e.g. in the existence of dropout
and ReLU units. However this phenomena can cause the per-parameter learning rate scaled by Adagrad to be unbounded.

In Algorithm 1, we provide a simple pseudo-code of the Adasecant algorithm.

7 Experiments

We have performed our experiments on MNIST with Maxout Networks [6] comparing Adasecant with popular stochastic
gradient learning algorithms: Adagrad, Rmsprop [7], Adadelta [17] and SGD+momentum (with linearly decaying learning
rate). Results are summarized in Figure 1 at the appendinx and we showed that Adasecant converges as fast or faster than
other techniques, including the use of hand-tuned global learning rate and momentum for SGD, RMSprop, and Adagrad.

8 Conclusion

We described a new stochastic gradient algorithm with adaptive learning rates that is fairly insensitive to the tuning of the
hyper-parameters and doesn’t require tuning of learning rates. Furthermore, the variance reduction technique we proposed
improves the convergence when the stochastic gradients have high variance. According to preliminary experiments presented,
we were able to obtain a better training performance compared to other popular, well-tuned stochastic gradient algorithms.
As a future work, we should do a more comprehensive analysis, which will help us to better understand the algorithm both
analytically and empirically.
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A Appendix

A.1 Derivation of Eq 11

∂E[(βigi + (1− βi)E[gi]− g′i)2]

∂βi
= 0 (20)

E[(βigi + (1− βi)E[gi]− g′i)
∂(βigi + (1− βi)E[gi]− g′i)

∂βi
] = 0 (21)

E[(βigi + (1− βi)E[gi]− g′i)(gi − E[gi])] = 0 (22)
E[(βigi(gi − E[gi]) + (1− βi)E[gi](gi − E[gi])− E[gi](gi − E[gi])] = 0 (23)

βi =
E[(gi − E[gi])(g

′
i − E[gi])]

E[(gi − E[gi])(gi − E[gi])]
=

E[(gi − E[gi])(g
′
i − E[gi])]

Var(gi)
(24)
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Algorithm 1: Adasecant: minibatch-Adasecant for adaptive learning rates with variance reduction
repeat

draw n samples, compute the gradients g(j) where g(j) ∈ Rn for each minibatch j, g(j) is computed
as, 1

n

∑n
k=1∇

(k)
θ f(θ)

block-wise normalize gradients of each weight matrix and bias vector
for parameter i ∈ {1, . . . , n} do

compute the correction term by using, γki =
E[(gi−g′i)(gi−E[gi])]k

E[(gi−E[gi])(g′i−E[gi]))]k

compute corrected gradients g̃i = gi+γiE[gi]
1+γi

if |g(j)i − E[gi]| > 2
√

E[(gi)2]− (E[gi])2 or
∣∣∣α(j)
i − E[αi]

∣∣∣ > 2
√

E[(αi)2]− (E[αi])2 then

reset the memory size for outliers τi ← 2.2
end
update moving averages according to Equation 16

estimate learning rate η
(j)
i ←

√
Ek[(∆

(k)
i )2]√

Ek[(αki )2]
− Ek[αki ∆k

i ]

Ek[(αki )2]

update memory size as in Equation 17

update parameter θji ← θj−1i − η(j)i · g̃
(j)
i

end
until stopping criterion is met;

A.2 Algorithm pseudo-code

Algorithm 1 contains the pseudo-code of the Adasecant algorithm.

A.3 Further Experimental Details

In our experiments with Adasecant algorithm, adaptive momentum term γki was clipped at 1.8. In 2-layer Maxout network
experiments for SGD-momentum experiments, we used the best hyper-parameters reported by [6], for Rmsprop and Adagrad,
we crossvalidated learning rate for 15 different learning rates sampled uniformly from the log-space. We crossvalidated 30
different pairs of momentum and learning rate for SGD+momentum, for Rmsprop and Adagrad, we crossvalidated 15 different
learning rates sampled them from log-space uniformly for deep maxout experiments. In Figure 2, we analyzed the effect of
using different minibatch sizes for Adasecant and compared its convergence with Adadelta in wall-clock time. For minibatch
size 100 Adasecant was able to reach the almost same training negative log-likelihood as Adadelta after the same amount of
time, but its convergence took much longer. With minibatches of size 500 Adasecant was able to converge faster in wallclock
time to a better local minima.
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(a) 2 layer Maxout Network

0 50 100 150 200 250 300 350

# Epochs

0.0

0.5

1.0

1.5

2.0

2.5

T
ra

in
in

g
 n

ll Adagrad 
Adasecant
SGD+momentum
Rmsprop
Adadelta

(b) 16 layer Maxout Network

Figure 1: Comparison of different stochastic gradient algorithms on MNIST with Maxout Networks. Both a) and b) are
trained with dropout and maximum column norm constraint regularization on the weights. Networks are initialized with
weights sampled from a Gaussian distribution with 0 mean and standard deviation of 0.05. In both experiments, the proposed
algorithm, Adasecant, seems to be converging faster and arrives to a better minima in training set. We trained both networks
for 350 epochs over the training set.
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Figure 2: In this plot, we compared adasecant trained by using minibatch size of 100 and 500 with adadelta using minibatches
of size 100. We performed these experiments on MNIST with 2-layer maxout MLP using dropout.
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