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Abstract

The paper considers the problem of structured output learning when the output
graph structure is not known and must be inferred during learning. Building on
the work of [1] in which a random set of spanning trees is used to approximate the
margin, the paper shows that there exists a unit L1-norm constrained combination
of spanning trees that achieves the full margin of the unknown output graph. It
is shown that optimising the margin under this constraint corresponds to a convex
optimisation problem that combines structured output and multiple kernel learn-
ing. Inference of the maximum violators is achieved by a generalisation of the
method of [1] that searches theK-best lists for the chosen trees. Structure is inter-
preted as the final weights attached to edges and it is shown that the exponentially
large set of all possible spanning trees of the complete output graph can be ef-
ficiently explored using a simple implementation of the maximum spanning tree
algorithm. Preliminary experiments with the method show encouraging results in
agreement with the theoretical analysis.

1 Introduction

Structured output prediction is an increasingly popular method for learning about real-world prob-
lems. It provides a learning framework that is able to leverage the information provided by label
correlations to improve prediction accuracy and has been used successfully across a wide range of
applications. The StructuredSVM[2] is a popular approach to learning the parameters of these pre-
diction models but despite being a convex optimisation procedure, its applicability is often limited
by the computationally expensive training procedure induced by the margin constraints that require
each training example to be compared to the inferred label. For certain models exact inference can
be performed efficiently (e.g. tree-structured graphs, planar Ising models, matchings), however ex-
act inference is generally known to be intractable for most graph structures. A further factor limiting
the application of structured output prediction to real-world problems is the absence of an explicit
output graph structure on which to learn. This is traditionally estimated before learning begins using
heuristics that take into consideration prior knowledge of the problem domain and the scalability of
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the solution. In this paper we propose to address both of these issues by learning using a weighted
combination of spanning trees over the complete output graph.

2 Related work

This paper builds on the work presented in [1], where the authors showed that a random sample of
spanning trees could obtain a significant fraction of the margin obtainable on the complete output
graph, here we show that we can obtain a larger margin and we actively include and remove trees
according to the MKL criteria. In [7] the authors sought to find the optimal tree structure prior to
learning using a maximum spanning tree, however edge scores were defined using heuristics. Our
edge scores are determined by their current contribution to the margin and our goal is to learn a
structure more complex than a tree. In [8] the authors introduce a tree inducing regularisation term
that penalises non-tree structures, which could possibly ignore higher-order interactions between
variables. In [10] the authors deal with the case of efficiently learning from a large set of kernels,
providing a solution to the case where the kernel was parameterised by a small number of real
valued parameters that were differentiable, however they asked whether efficient methods existed
for kernels that come from a combinatorial set. Here we address this question by showing that the
maximum spanning tree algorithm can be used to generate such candidate kernels for the ensemble.

3 MKL Formulation

We consider the general supervised learning problem with an arbitrary input space X and output
space Y consisting of the set of all `-dimensional multilabel vectors y = (y1, y2, . . . , y`), where
each label yi ∈ Yi takes on one of ri possible positive integer values. Each example (x,y) is mapped
to the joint feature space φ(x,y) = ρ(x)⊗ψ(y) of the input ρ and output ψ feature space. Our goal
is to find the predictor w residing within the joint feature space that best models the distribution
of possible labels y ∈ Y conditioned on the input x ∈ X . Let F (x,y;w) = 〈w,φ(x,y)〉 be
the score of example (x,y) evaluated at w. We assume joint feature map φ is defined over the
complete graph G consisting of `-nodes

(
`
2

)
undirected edges and the score function is given by

F (x,y;w) =
∑

(i,j)∈G〈wij ,φij(x, yi, yj)〉.

In [1] the authors showed that under the assumption of a normalised joint feature space ||φ(x,y)|| =
1 and a unit norm predictor ||w|| = 1, the score function over the complete output graph can be ex-
pressed as the expectation of score function over trees 〈w,φ(x,y)〉 = `

2ET∼U(G)〈wT ,φT (x,y)〉,
where U(G) is the uniform distribution over the set of all spanning trees S(G) for the complete
graph G. Here wT is the projection of w onto tree T with (wT )(i,j) = wi,j if (i, j) ∈ T
and zero otherwise, and φT is defined similarly. This allows us to express the score function as

〈w, φ(x,y)〉 =
∑
T∈S(T ) âT 〈ŵT , φ̂T (x,y)〉 where âT =

√
`
2 ||wT ||/``−2 and

∑
T∈S(T ) âT ≤ 1

(see [1] for further details).

If we assume a margin γ > 0 can be achieved by learning over the complete graph, then this can be
replicated by assigning a weight âT to each tree T ∈ S(G) and learning over this ensemble of trees.
This leads to our argument that by reformulating the problem in terms of unit L1-norm multiple
kernel learning over the space of all possible trees, we can achieve a margin at least as large as that
obtainable by learning over the complete output graph. This comes from the fact that weights âT
represent a feasible but not necessarily optimal solution to the unit L1-norm MKL problem. It can
be shown that by dropping the hard margin assumption and introducing slack variables, the large
margin learning problem reduces to the familiar looking optimisation presented in Definition 1.
Definition 1. L1-norm MKL for Spanning Trees

min
wT ,ξ

1

2

 ∑
T∈S(G)

||wT ||

2

+ C

m∑
k=1

ξk (1)

s.t. : min
y 6=yK

∑
T∈S(G)

〈wT , φ̂T (xk,yk)− φ̂T (xk,y)〉 ≥ 1− ξk, ξk ≥ 0 ∀ k, .
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4 Optimisation

To run the optimisation we make use of the dual form of the optimisation given in Defintion 1. We
alternate between solving the structured output problem using a fixed ensemble of spanning trees
and updating the weights of trees in, and possibly adding trees to, the ensemble.

4.1 Structured Output Learning

We use a variant of the Frank-Wolfe algorithm [3] during the structured output learning stage, select-
ing a particular example and updating its dual variables in the direction proposed by the inference
scheme. The problem of exact inference is addressed by extending the K-best dynamic program-
ming algorithm first presented in [1] to the case where each tree T ∈ S(G) has a weight given by
λT ≥ 0.
Lemma 1. Let y∗K = argmax

y∈YT ,K

F (x,y;w) be the highest scoring multilabel in YT ,K , where T =

{T ∈ S(G) : λT > 0}. Suppose that

F (x,y∗K ;w) ≥
∑

T∈S(G)

λT F̂T (x,yT,K ;wT ) = θx(K),

where FT (x,y) = 〈wT ,φT (x,y)〉, Then it follows that F (x,y∗K ;w) = maxy∈Y F (x,y;w). Fur-
thermore, if F (x,y∗k;w) < θx(K) then maxy∈Y F (x,y;w) ≤ θx(K).

This lemma states that we can use any K that satisfies the criteria above and be sure that y∗K is the
maximum scoring example on F . This inference step is used to both make predictions and find the
direction in which to update the model. However during the model update it may be more efficient
to perform only approximate inference and this lemma provides us with a method of measuring
the maximum degree of sub-optimality of our inference i.e. F (x,y∗K ;w)/θx(K). These approxi-
mate rates of inference can be used in conjunction with the Frank-Wolfe rates of convergence for
approximate convergence presented in [3]. Note that the disadvantages of performing approximate
inference are much less pronounced at the beginning of the optimisation when we are likely to be
far from the true solution, both in terms of the active constraints and the tree weightings used in the
ensemble, here small steps towards candidate violators can significantly improve the value of the
objective function.

4.2 Tree Learning

In the traditional MKL setup where there is a fixed set of kernels, we can simply iterate between
updating kernel weights and solving the quadratic program until some convergence criteria is met.
Our problem is more difficult in that we have an exponentially large set of kernels, |S(G)| = ``−2,
making it intractable to consider them all at once. To overcome this we propose to incrementally add
and remove kernels from the active set T := {T : λT > 0} based upon their violation of the KKT
conditions for optimality. Let VT (α) = 1

2

∑
k,ȳ

∑
j,ỹ αk(ȳ)αj(ỹ)K̃T (xk, ȳ;xj , ỹ), where K̃T is

the kernel function for feature mapping φ̃T (xk, ȳ) = φT (xk,yk) − φT (xk, ȳ) and αk(ȳ) is the
dual variable for the constraint

∑
T∈S(G)〈wT , φ̂T (xk,yk)− φ̂T (xk,y)〉 ≥ 1− ξk. When adding a

tree to T we look to find the tree T ∗ = argmax T∈S(G) VT (α). By decomposing the kernel into its
edge components we can write the objective function we are optimising simply as a sum over edges

VT (α) =
1

2

∑
(v,v′)∈T

∑
k,ȳ

∑
j,ỹ

αk,rαj,s〈φ̃vv′(xk, ȳv, ȳv′), φ̃vv′(xj , ỹv, ỹv′)〉

It is a well-known that the solution of this optimisation can be found using the maximum spanning
tree algorithm [4] and we see that the search over an exponentially large set of kernels can be reduced
to a simple algorithm that runs in O (|E| log(|V |)) time.

5 Experiments

We evaluate the performance of the L1 norm spanning trees (L1-TA) method and compare it to
the original random spanning tree algorithm ( L2-RTA), an L1-norm MKL formulation (L1-RTA),
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where a fixed set of trees are weighted according to the MKL framework and a standard SVM trained
and optimised individually for each node. We use three real-world datasets, Emotions, Scene and
Medical, along with two artificial ones, Circle10 and Circle50 generated according to the method
outlined in [5]. We use 5-fold cross validation to select the model parameters and compute the
results. The margin slack parameter C is evaluated over the set {0.001, 0.01, 0.1, 1, 10, 100, 1000}
and the number of initial trees T0 is tested over {5, 10, 20, 40}. Each method is presented with the
same initial set of trees T0 where RTA maintains an equal weight for each tree, L1-RTA adjusts the
weights of T0 using MKL and L1-TA, adjusts weights whilst adding and removing trees according
to a criteria defined by the violation of the KKT conditions for optimality. For each dataset we use a
linear kernel for the input space and the size of our K-best list is restricted by the number of labels
in that particular dataset. We report both the multilabel and microlabel accuracies, where multilabel
loss is indicates correct labelling and the microlabel accuracy measures fraction of correct labels i.e.
1 − ∆(y,y′). In Table 1 we present the multilabel and microlabel accuracies, using the different

Table 1: Fixed margin learning out of sample performance.

Multilabel accuracy (%) Microlabel accuracy (%)
SVM L2-RTA L1-RTA L1-TA SVM L2-RTA L1-RTA L1-TA

Emotions 22.2 29.00 29.19 29.93 77.6 77.76 77.63 78.15
Scene 53.8 69.70 69.74 69.90 90.2 90.82 90.84 90.92
Medical 8.2 40.91 40.34 41.17 97.4 97.87 97.89 97.88
Circle10 71.1 96.47 96.88 96.97 95.3 99.47 99.54 99.58
Circle50 30.2 30.58 31.21 49.47 94.3 92.01 91.72 93.93

algorithms and implementing the fixed margin requirement. On the first four datasets we observe that
the performance of each spanning tree method is relatively similar, all on average outperforming the
standard SVM. On Circle50 we see that L1-TA significantly outperforms the other methods in terms
of both multilabel accuracy. We believe that this is due to the large number of labels in the Circle50
dataset and the inability of a relatively small number of random spanning trees to fully express the
relationships between these labels. On the other hand, the L1-TA criteria for including new trees
is able to directly exploit the discriminative edges, whilst the re-weighting removes redundant trees
from the ensemble and adds those with additional explanatory power.

Margin scaling
The optimisation framework and experiments presented thus far focus on finding the predictor w
that minimises the expected 0/1 loss, however this measure of loss is not always suitable when
considering structured outputs. To account for the accuracy of a prediction an arbitrary loss function
∆ : Y × Y → R can be introduced into the constraints. We follow [6] and scale the margin
required by the loss of the candidate labelling y resulting in the the constraints 〈w, φ̃(xk,y)〉 ≥
∆(yk,y)− ξk for each y ∈ Y . The Hamming loss function ∆(y,y′) = `−1

∑`
v=1 I[yv 6= y′v] is a

natural choice for structured output learning, as well as benefiting from decomposability properties.
The maximum violator in this case is given by ŷk = argmax y∈YT ,K

F (xk,y;w) + ∆(yk,y),

Table 2: Margin scaled learning out of sample performance.

Multilabel accuracy (%) Microlabel accuracy (%)
L2-RTA L1-RTA L1-TA L2-RTA L1-RTA L1-TA

Emotions 32.05 32.39 32.39 81.27 81.44 81.39
Scene 68.93 68.93 68.57 90.90 90.90 90.83
Medical 39.02 39.31 43.65 98.01 98.01 98.18
Circle10 96.47 96.98 97.19 99.47 99.62 99.66
Circle50 38.84 38.54 56.67 94.69 94.14 95.66

which can be handled easily by the K-best inference algorithm due to the decomposability of the
Hamming loss function over the edges of a tree. In Table 2 we present the mutliabel and microlabel
accuracies having implemented the algorithms using the re-scaled margin requirement. The results
are similar to those obtained for the fixed margin case with L1-TA again significantly outperforming
on the Circle50 dataset. On four out of five datasets, we observe a noticeable improvement in the
accuracy of the predictor when the margin required is scaled by the Hamming loss function. We
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believe that this is largely due to the Hamming loss function being a more natural target to minimise
in structured output problems. As a consequence, in large graph problems especially, we expect that
a smaller number of active constraints are required as we no longer have to satisfy a margin of 1 for
each violator that differs from the true labelling by only a single label. We believe that the Scene
dataset didn’t benefit from this adjustment due to its low label density, which effectively reduces the
problem to multiclass in nature.

.

References
[1] Mario Marchand, Hongyu Su, Emilie Morvant, Juho Rousu, and John Shawe-Taylor. Multil-

abel structured output learning with random spanning trees of max-margin markov networks.
In Proceedings of Neural Information Processing Systems (NIPS), 2014.

[2] Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and Yasemin Altun. Support
vector machine learning for interdependent and structured output spaces. In Proceedings of
the twenty-first international conference on Machine learning, page 104. ACM, 2004.

[3] Simon Lacoste-Julien, Martin Jaggi, Mark Schmidt, and Patrick Pletscher. Block-coordinate
{Frank-Wolfe} optimization for structural {SVMs}. In Proceedings of The 30th International
Conference on Machine Learning, pages 53–61, 2013.

[4] Joseph B Kruskal. On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical society, 7(1):48–50, 1956.

[5] Wei Bian, Bo Xie, and Dacheng Tao. Corrlog: Correlated logistic models for joint prediction
of multiple labels. In International Conference on Artificial Intelligence and Statistics, pages
109–117, 2012.

[6] Ben Taskar, Carlos Guestrin, and Daphne Koller. Max-margin markov networks. Advances in
neural information processing systems, 16:25, 2004.

[7] Joseph K Bradley and Carlos Guestrin. Learning tree conditional random fields. In Proceedings
of the 27th International Conference on Machine Learning (ICML-10), pages 127–134, 2010.

[8] Ofer Meshi, Elad Eban, Gal Elidan, and Amir Globerson. Learning max-margin tree predictors.
arXiv preprint arXiv:1309.6847, 2013.

[9] Andreas Argyriou, Raphael Hauser, Charles A Micchelli, and Massimiliano Pontil. A dc-
programming algorithm for kernel selection. In Proceedings of the 23rd international confer-
ence on Machine learning, pages 41–48. ACM, 2006.

[10] Peter Gehler and Sebastian Nowozin. Infinite kernel learning. In NIPS Workshop on Kernel
Learning: Automatic Selection of Optimal Kernels, 2008.
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