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Abstract

We introduce and analyze stochastic optimization methods where the input to each
gradient update is perturbed by noise. We show that this framework forms the
basis of a unified approach to analyze asynchronous stochastic optimization algo-
rithms. The main intuition is that asynchronous algorithms can be thought of as
serial methods operating on noisy inputs. Using our framework, we provide a new
analysis for HOGWILD! that is simpler than earlier analyses, removes many as-
sumptions of previous models, and can yield improved performance bounds. We
further apply our framework to develop and analyze KROMAGNON: a novel, par-
allel, sparse stochastic variance-reduced gradient (SVRG) algorithm. We demon-
strate on a 16-core experiments that KROMAGNON can be up to four orders of
magnitude faster than the standard SVRG algorithm.

1 Introduction
Asynchronous parallel stochastic optimization algorithms have recently gained significant traction
in algorithmic machine learning. A large body of recent work has demonstrated that near-linear
speedups are achievable, in theory and practice, on many common machine learning tasks [1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 13, 16].

Although asynchronous stochastic algorithms are simple to implement and enjoy excellent per-
formance in practice, they are challenging to analyze theoretically. The current analyses require
lengthy derivations and several assumptions that sometimes may not reflect realistic system behav-
iors. Moreover, due to the difficult proof machinery, the algorithms analyzed are often simplified
versions of the ones actually run in practice. To overcome these difficulties, we propose a general
framework for obtaining convergence rates for parallel, lock-free, asynchronous first-order stochas-
tic algorithms. We interpret the algorithmic effects of asynchrony as perturbing the stochastic iter-
ates with bounded noise. This intuition allows us to show how a variety of asynchronous first-order
algorithms can be analyzed as their serial counterparts operating on noisy inputs. The advantage of
our framework is that it is compact and elementary, can remove or relax simplifying assumptions
adopted in prior art, and can yield improved bounds than earlier work.

We demonstrate the general applicability of our framework by providing new convergence analyses
for HOGWILD!, and introduce and analyze KROMAGNON: a new asynchronous sparse version
of the stochastic variance-reduced gradient (SVRG) method [17]. KROMAGNON is a modified
version of SVRG that allows for sparse updates, we show that this method can be parallelized in the
asynchronous model. Experimentally, KROMAGNON achieves nearly-linear speedups on a machine
with 16 cores and can be up to four orders of magnitude faster than the standard (dense) SVRG.

2 Asynchronous Optimization through a Perturbed Iterate Lens
We study parallel asynchronous iterative algorithms that minimize convex functions f(x) with x ∈
Rd. The computational model is the same as that of Niu et al.[1]: a number of cores have access
to the same shared memory, and each of them can read and update components of x in the shared
memory. The algorithms that we consider are asynchronous and lock-free: cores do not coordinate
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their reads or writes, and while a core is reading/writing other cores can update the shared variables
in x. We focus our analysis on functions f that are L-smooth and m-strongly convex.

A popular way to minimize convex functions is via first-order stochastic algorithms. These algo-
rithms can be described using the following iteration

xj+1 = xj − γg(xj , ξj) (1)

where ξj is a random variable independent of xj and Eξjg(xj , ξj) = ∇f(xj). A major advantage
of the above iterative formula is that it can be used to track the algorithmic progress and establish
convergence rates to the optimal solution. Unfortunately, the progress of asynchronous parallel
algorithms cannot be precisely analyzed using the above iterative framework. Processors do not
read from memory actual iterates xj , as there is no global clock that synchronizes reads or writes
among cores, resulting in inconsistent reads of the shared variable.

In the subsequent sections, we show that the following simple perturbed variant of (1) can capture
the algorithmic progress of asynchronous stochastic algorithms:

xj+1 = xj − γg(xj + nj , ξj) (2)

where nj is a stochastic error term. For simplicity let x̂j = xj+nj . If we define aj = E‖xj−x∗‖2,
we obtain the following recursion after elementary manipulations

aj+1 ≤ (1− γm)aj + γ2 E‖g(x̂j , ξj)‖2︸ ︷︷ ︸
R
j
0

+2γmE‖x̂j − xj‖2︸ ︷︷ ︸
R
j
1

+2γ E〈x̂j − xj ,g(x̂j , ξj)〉︸ ︷︷ ︸
R
j
2

. (3)

The above recursion is key to our analysis. We show that for givenRj0, Rj1, andRj2, we can establish
convergence rates through elementary algebraic manipulations. The key contribution of our work
is to show that 1) this iteration can capture the algorithmic progress of asynchronous algorithms,
and 2) the error terms can be bounded to obtain the “right” convergence rates for HOGWILD!, and
KROMAGNON our novel asynchronous sparse SVRG.

Analyzing HOGWILD! We provide a simple analysis of HOGWILD!, a popular asynchronous
implementation of SGM [1]. We assume that f is decomposable in n terms f(x) = 1

n

∑n
i=1 fei(x)

where x ∈ Rd, and each term fei(x) depends only on the coordinates indexed by the subset ei
of {1, 2, . . . , d}. We refer to the sets ei as hyperedges and denote the set of hyperedges by E .
The hyperedges imply a conflict graph between the n function terms, where two terms fei and fej
are connected if ei ∩ ej 6= ∅. Let us define by ∆c, the average degree of this conflict graph.

Algorithm 1 HOGWILD!

1: while iterations ≤ T do in parallel
2: x̂ = inconsistent read of the shared variable
3: s = random hyperedge
4: u = −γ · g(x̂, s)
5: for all v ∈ s do
6: [x]v = [x]v + [u]v // atomic write

HOGWILD! (Alg. 1) is deployed on multiple
cores that have access to shared memory, where
the optimization variable x and the data points
that define the f terms are stored. During its ex-
ecution each core samples uniformly at random
a hyperedge s from E . It reads the coordinates
v ∈ s of the shared vector x, evaluates ∇fs at
the point read, and adds −γ∇fs to the shared
variable. In HOGWILD! cores do not synchro-
nize or follow an order between reads or writes.
Moreover, they access/update a set of coordi-
nates in x without the use of any locking mechanisms that would ensure a conflict-free execution.
The reads/writes of distinct cores can intertwine in arbitrary ways, e.g., while a core updates a subset
of variables, other cores can access/update the same variables.

In [1], the authors analyzed a simplified variant of HOGWILD!, and established convergence rates
under several assumptions. In their analysis only a single coordinate per sampled hyperedge is
updated (i.e., the for loop in HOGWILD! is replaced with a single coordinate update). The authors
moreover assume consistent reads, i.e., while a processor is reading, no writes to the shared memory
occur. We show how our perturbed gradient framework can be used in an elementary way to analyze
the “full updates” version of HOGWILD!, while obtaining improved bounds compared to [1] and
removing several assumptions.

A subtle, but important point is that we order the samples based on the order in which they were
sampled, not the order in which cores complete processing them. In our analysis, si denotes the
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sample obtained when line 2 in Alg. 1 is executed for the i-th time. This ordering is distinct from
the one used in the original work of [1]. In that setting, the samples are ordered according to the
completion time of each thread. The problem with the latter ordering is that the distribution of the
samples is not always uniform (a theoretical requirement for SGM), something that is disregarded
in [1]. Our ordering resolves this issue by guaranteeing uniformity among samples.

Assuming atomic writes (i.e., writes complete successfully at some point in time), then they will
all appear in the shared memory by the end of the execution, in the form of additive coordinate-
wise updates. Due to the commutativity of addition, the following vector is contained in the shared
memory after processing a total of T hyperedges:1

x1︷ ︸︸ ︷
x0 − γg(x̂0, s0)− . . .− γg(x̂T−1, sT−1)︸ ︷︷ ︸

xT

,

where x0 is the initial guess and x̂i is what the processor working on si read from the shared
memory. We now define the perturbed iterates as xi+1 = xi − γg(x̂i, si) where si is the i-th
uniformly sampled hyperedge. Observe that all but the last of these iterates are “fake”: there might
not be an actual time when they exist in the shared memory during the execution. However, x0 is
what is stored in memory before the execution starts, and xT is exactly what is stored in shared
memory at the end of the execution. We observe that the above iterates place HOGWILD! in our
perturbed gradient framework. We are only left to bound the three error terms Rj0, Rj1, Rj2.

To measure the distance between x̂j and xj , observe that any difference between them is solely
caused by hyperedges that overlap in time with sj (i.e. samples si that are processed at the same
time with sj). To see this, let si be an “earlier” sample, i.e. i < j, that does not overlap with sj in
time. This implies that the processing of si finishes before sj starts being processed. Hence, the full
contribution of γg(x̂i, si) will be recorded in both x̂j and xj (for the latter this holds by definition).
Similarly, if i > j and si does not overlap with sj in time, then neither x̂j nor xj (for the latter, again
by definition) contain any of the coordinate updates involved in the gradient update γg(x̂i, si). To
proceed, we adopt a simple assumption held in prior art.
Assumption 1. No more than τ hyperedges can overlap in time with a single sampled hyperedge.
Assumption 1 guarantees that if i < j − τ or i > j + τ , then the sample si does not overlap in
time with sj . Hence, there exist diagonal matrices Sji with entries in {−1, 0, 1} such that x̂j −xj =∑j+τ
i=j−τ, i 6=j γS

j
ig(x̂i, si). These diagonal matrices account for all possible updates occurring while

sample sj is being processed. Using some elementary graph theoretic and probability arguments,
we obtain the following error bounds.

Lemma 1. HOGWILD! satisfies recursion (3) with Rj1 = E‖x̂j − xj‖2 ≤ O(1) ·
γ2M2

(
τ + τ2 ∆c

n

)
and Rj2 = E〈x̂j − xj ,g(x̂j , sj)〉 ≤ O(1) · γM2 · τ ∆c

n . where M ≥ ‖g‖.

Plugging the bounds of Lemma 1 in our recursive formula (3), asserts that HOGWILD! satisfies the
recursion aj+1 ≤ (1− γm) aj +O(1)γ2M2

(
1 + τ ∆c

n + γmτ + γmτ2 ∆c
n

)
. Observe that if τ—a

proxy for the number of cores—is O(min{n/∆c,M
2/(εm2)}), then—up to constant factors—

HOGWILD! satisfies the same recursion as SGM. Our main result follows.
Theorem 2. If τ = O(min {n/∆c,M

2/εm2}), then HOGWILD! with step-size γ = O(1)εm/M2,
reaches an accuracy of E‖xT − x∗‖2 ≤ ε after T ≥ O(1)M

2 log(a0/ε)
εm2 iterations.

Comparison to the original HOGWILD! analysis of [1] We would like to summarize the key
points of improvement compared to the original HOGWILD! analysis: 1) Our perturbed iterate
analysis is elementary and compact, and follows simply by bounding the the asynchrony error terms
Rj0, R

j
1, R

j
2. 2) We do not assume consistent reads: while a core is reading the shared variable other

cores are allowed to read, or write. 3) We analyze the “full-update” version of HOGWILD!; in the
original HOGWILD! analysis only a single random coordinate of a sampled hyperedge is updated. 4)
We use an ordering of the samples that guarantees they have a uniform distribution, a key property
for the convergence analysis. 5) [1] establishes a nearly-linear speedup for HOGWILD! if τ , the
proxy for the number of cores, is bounded as τ = O(4

√
n/∆c). Here, we obtain a linear speedup for

up to τ = O(min {n/∆c,M
2/εm2}), which can be orders of magnitude larger.

1throughout this section we denote g(x, sj) = ∇fsj (x), which we assume to be bounded ‖g(x, s)‖ ≤M
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3 KROMAGNON: Sparse and Asynchronous SVRG

Algorithm 2 KROMAGNON

1: x = y = x0

2: for all Epoch = 1 : E do
3: y = x; Compute in parallel z = ∇f(y)
4: while iterations ≤ S do in parallel
5: x̂ = an inconsistent RAM read
6: sample a random hyperedge s
7: [u]s = −γ · (∇fs([x]s)−∇fs([y]s)−Dsz)
8: for all v ∈ s do
9: [x]v = [x]v + [u]v // atomic write

The stochastic variance reduced gradient
(SVRG) algorithm is a variant of SGM that
uses intermediate full gradient computations
to achieve linear rates [17]. Can SVRG be par-
allelized in the asynchronous setting? In prac-
tice one of the bottlenbecks on sparse prob-
lems is that the SVRG iterates are dense, lead-
ing to severe memory conflicts, and redundant
access overheads. We overcome that by ap-
propriately projecting each stochastic gradient
step on the support of the sampled hyperedge.
This sparse-updates SVRG allows us to ana-
lyze it under the asynchronous model using
our perturbed iterates framework. In practice,
the sparsification of the updates leads to a sig-
nificantly faster algorithm compared to dense SVRG. KROMAGNON is our asynchronous imple-
mentation of sparse SVRG, and is given in Algorithm 2. The diagonal matrix Ds has non-zero
entries proportional to the inverse degree of each coordinate of x on the bipartite graph between
function terms and variables in x that is defined by the hyperedges. Our main result of this section
is given below.
Theorem 3. Let τ = O(min{κ/log(M2/L2ε), 6

√
n/∆c}) where κ = L/m. Then, KROMAGNON,

with step-size γ = O(1) 1
Lκ and epoch size S = O(1)κ2, attains E‖yE − x∗‖2 ≤ ε after

E = O(1) log
(
a0
ε

)
epochs, where yE is the final iterate and a0 = ‖x0 − x∗‖2.

Empirical Evaluation We implemented HOGWILD!, dense SVRG, and KROMAGNON in Scala.
Following [6], we optimize a quadratic penalty relaxation for vertex cover eswiki-2013 where
n ≈ 970K, and d ≈ 23M and wordassociation-2011 with n ≈ 10K and d ≈ 72K [18, 19, 20].
Each algorithm was run for 50 epochs and up to 16 threads. For the SVRG algorithms, we re-
compute y and the full gradient ∇f(y) every 2 epochs. We normalize the objective values such
that the objective at the initial starting point has a value of 1, and the minimum attained across all
algorithms and epochs has a value of 0. Experiments were conducted on a Linux machine with 2
Intel Xeon Processor E5-2670 (2.60GHz, 8 cores each) with 250Gb memory. We were unable to
run dense SVRG on the eswiki-2013 dataset due to the large number of features. We observe that
KROMAGNON is at least one and up to four orders of magnitude faster than dense SVRG. Observe
that both dense SVRG and KROMAGNON attain similar optima.
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