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Abstract

The natural gradient is the Riemannian gradient of a function defined over a sta-
tistical model, evaluated with respect to the Fisher information metric. In machine
learning and stochastic optimization, the natural gradient is effectively employed
in many different contexts, for instance in the optimization of the stochastic re-
laxation of a function, in policy learning for reinforcement learning, in Bayesian
variational inference, and for the training of neural network. In this paper we
study the natural gradient for models in the Gaussian distribution, parametrized
by a mixed coordinate system, given by the mean vector and the precision ma-
trix, i.e., the inverse covariance matrix. This parameterization allows an efficient
estimation of the natural gradient starting from a sample of points, based on the
empirical estimation of covariances, in particular in the case of sparse precision
matrices. An important contribution of the paper is given by the formalization
of the estimation of the natural gradient for the Gaussian distribution as a least
squares regression problem. This implies that in the high-dimensional setting it
is possible to perform model selection simultaneously to the computation of the
natural gradient, using for instance subsect selection techniques from linear re-
gression.

1 Introduction

In this paper we study the problem of optimizing a function defined over a statistical model using
gradient descent techniques. Since the geometry of statistical models is not Euclidean [21, 2, 5], the
Riemannian gradient has to be evaluated with respect to the geometry of the space, which in the case
of statistical model is given by Fisher information metric. Amari [4] was the first to propose the use
of the Riemannian gradient over statistical models and called it the natural gradient. In following
the natural gradient has been extensively used in many different applications and settings in machine
learning and in optimization, and it proved to be more effective in many situations. However the
main issue related to the computation of the natural gradient are related to its computational com-
plexity. To partially overcome this problem, the gradient is often estimated from a sample rather than
computed exactly, however, this still may be unpractical to compute for large dimensional problems.
Let n is the dimension of the problem, and λ the sample size, for models in the exponential family
by definition the estimation of the natural gradient requires to solve a linear system of equations,
which has a complexity of O(n3 + λn2) by Gauss elimination algorithm, even if better theoretical
algorithms are known, up toO(n2.376...). For the special case of models in the multivariate Gaussian
family, due to some special properties of this statistical model, the complexity goes down toO(λn2)
once the model is parametrized by the mean vector and the covariance matrix.

A quadratic complexity on nmay become unfeasible for large dimensions, for this reason it becomes
of great interest to identify submodels in the Gaussian family, which allow the computation of the
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natural gradient linearly in n and that at the same time are enough expressive to represent correlations
among the random variables of the statistical model. For the Gaussian distribution, a common
approach consists in the choice of block-diagonal covariance matrices, which translated into block-
diagonal Fisher information matrices, which become more tractable during the inversion.

In this paper we introduce a mixed parametrization for the Gaussian distribution based on the mean
vector and inverse covariance matrix, which allow to represent sub-models in the Gaussian distri-
bution as exponential families. We derive formulae for the estimation of the natural gradient based
on least-squares (ridge) regression for the mixed parameterization, which scale linearly with the
number of interactions of the model, i.e., the number of non-zero components of the precision ma-
trix, and quadratically with the sample size, provided the sample size is smaller than the number
of such components, and with the cube of the sample size otherwise. We conclude the paper by
mentioning some examples of applications in machine learning and stochastic optimization, where
the parameterization and the formulae for the estimation of the natural gradient could be directly
employed.

2 Mixed Parameterization for the Gaussian Distribution

The most common parameterization for the multivariate Gaussian distribution is given by the mean
vector µ and the covariance matrix Σ, however other parameterizations are possible. In information
geometry, at least two other sets of parameters play an important role: the natural parameterization
of the exponential family θ = (θ; Θ), to which the Gaussian distribution belongs, and the expecta-
tion parameterization η = (η;E), e.g., [23], cf. [15]. The Fisher information matrix for the (µ; Σ)
parameters is block-diagonal, however the biggest advantage of this parameterization is the fact that
the natural gradient can be computed directly without any matrix multiplication. On the other side,
when it comes to the identification of lower dimensional models in the Gaussian distribution, one
possibility it to impose independence among couples of variables, i.e., setting σij = 0 in Σ. This
results in a sparse covariance matrix, however unless Σ becomes block-diagonal, such sub-models
do not belong to the exponential family, and thus the computation of the natural gradient would
required the inversion of the Fisher information matrix. The parameterization based on the expec-
tation parameters, with ηi = µi = Ep[Xi] and ηij = Ep[XiXj ] = σij + µiµj determines a Fisher
information matrix which is not block-diagonal unless µ = 0, however, the estimation of the nat-
ural gradient can be computed still in O(λn2). However, unless Σ becomes block-diagonal, the
independence among variables given by ηij = ηiηj does not identify an exponential sub-models,
compromising the duality between expectation and natural parameters which provides a formula for
the natural gradient which does not require the inversion of the Fisher information matrix. On the
other hand, the natural parameterization of the Gaussian distribution is based on the inverse covari-
ance matrix and has two important properties: a zero in the precision matrix identify an exponential
sub-models, and at the same time it implies conditional independence among variables. However,
unless the distribution is centered, the Fisher information matrix is not block-diagonal, and more-
over the Fisher information matrix cannot be estimated from a sample, unless the Fisher information
matrix is inverted. This determines a complexity of O(n3 + λn2), which can be further reduced to
O(λd + w3n) in case of chordal Gaussian graphical models [4, 9], for which the joint probability
distribution can be factorized according to a junction tree, where w denotes the size of the maximum
clique and d the number of non zero entries in the precision matrix.

In the this section we introduce a mixed parameterization for the Gaussian distribution, based on
(η,Θ). Expectation parameters and natural parameters are dually coupled in the sense of the Legen-
dre transform [5], and any parameterization determines a block diagonal Fisher information matrix,
as for the (µ,Σ). Consider a vector x = (x1, . . . ,xn)T ∈ Rn = Ω. Let η = µ ∈ Rn be the mean
vector and Θ = 1

2Σ−1 = [σij ] be n × n symmetric positive-definite inverse covariance matrix, the
multivariate Gaussian distribution can be written as

p(x; η,Θ) = (2π)−n/2
∣∣∣∣−1

2
Θ−1

∣∣∣∣−1/2

exp
(
(x− η)TΘ(x− η)

)
. (1)

One of the advantages of standard parameterization (µ; Σ) compared to the other two is given by
the fact that the Fisher information matrix becomes block-diagonal, and thus easier to invert. On the
other side, the θ and η parameters are dually coupled, and the Fisher information matrices Iθ(θ)
and Iη(η) are one the inverse of the other for corresponding θ and η.
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3 Estimation of the Natural Gradient

In this section we present the main result of the paper, which consists of an alternative formula for
the estimation of the natural gradient of the expected value of a function with respect to a Gaussian
distribution parametrized by (η; Θ). The theorem is an adaptation to the Gaussian case of an analo-
gus result for discrete exponential families [14]. See also [22] for a related result in the context of
the training of neural networks. In the following we show that the natural gradient can be estimated
by means of least-squares (ridge) regression, with a computational complexity of O(λ3 + λ2n2).
For the full Gaussian distribution, with no restrictions on the covariance matrix, this result compares
favorably with respect to the O(λn3) complexity of the (θ; Θ) parameterization [4, 9], however it is
worse than theO(λn2) complexity for the (µ; Σ) parameterization [1]. Nevertheless, the advantage
of our parameterization becomes evident when dealing with Gaussian sub-models with sparse preci-
sion matrices, where the computational complexity goes down toO(d3 +λd2), and toO(λ3 +λ2d)
for λ < d, where d ≤ n2 is the number of non zero entries in the precision matrix.

Theorem 1 Let p be a Gaussian distribution parametrized by (η,Θ) and let P be an i. i. d. sample
from p of cardinality λ. We denote by A = [T ij(x)], with T ij(x) = XiXj − Eθ[XiXj ], i, j =
1, . . . , n, i ≤ j and x ∈ P , the design matrix of the centered second-order sufficient statistics, and
with y = (f(x)) the column vector associated to the evaluations of f .

1. The natural gradient ∇̃Eη[f ] can be estimated by
(

Ĉov(Xi, f)
)

.

2. The least squares estimator ĉ given P of the regression model f(x) =
∑
i≤j cijTij(x) + ε

converges to the natural gradient ∇̃EΘ[f ], as λ→∞.

3. The natural gradient ∇̃EΘ[f ] of the Gaussian distribution can be approximated by least
squares ridge regression by ĉridge = (A>A + 1)−1A>y. The regression problem can be
equivalently solved in the dual variables by ĉridge = A>(AA> + 1)−1y, with a computa-
tional complexity of O(λ3 + λ2n2).

4. The natural gradient for a Gaussian model with sparse precision matrix, where d ≤ n2

is the number of non zero entries, can be estimated in O(d3 + λd2), or equivalently, for
λ < d, in O(λ3 + λ2d).

5. The previous results can be combined with specific algorithms for chordal Gaussian graph-
ical models [4, 9], resulting in a computational complexity for the estimation of the natural
gradient of O(n(λ3 + λ2w2)) if the algorithm is run in the dual variables.

Proof. The Fisher information matrix in the mixed (η; Θ) parameterization is block-diagonal, thus
the natural gradient for η and Θ is evaluated independently. For ∇̃Eη[f ], by duality we have

Iη(η)−1∇Eη[f ] = ∇Eθ[f ] =
(

Ĉov(f,Xi)
)

, see [5, 18, 16]. As to ∇̃EΘ[f ], the least squares
estimator is

ĉ = (A>A)−1A>y =

[∑
x∈P

T ij(x)T kl(x)

]−1(∑
x∈P

f(x)T ij(x)

)

=
[
Ĉov(Tij(x), Tkl(x))

]−1 (
Ĉov(f, Tij(x))

)
,

which corresponds to the formula for the natural gradient in terms of covariances, e.g., [6, 13].

We conclude this section with some remarks about possible approaches to the problem of choosing
a Gaussian sub-model in the optimization, identified by a sparse covariance matrix, when this is not
known in advance. The problem of employing a good model for the optimization of E[f ] is cru-
cial, indeed the choice of the model determines the landscape of the function to be optimized, and
in particular the number of local minima. Lower-dimensional models require a smaller number of
parameters to be estimated and thus may be more efficient, however they may determine premature
convergence to local minima. A two stage approach to the problem would consists of a first step
when the sparse precision matrix is estimated from a sample of point, together with the evaluations
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of f , followed by an estimation of the natural gradient. By formalizing the estimation of the natural
gradient as a linear regression problem, the two steps can be solved simultaneously. A naive imple-
mentation of this approach could be based on a subsect selection strategy, such as a forward stepwise
selection or least angle regression [7]. By adding new variables to the regression function, the di-
mension of the Gaussian sub-model is increased, and at the same time the number of components of
the natural gradient to be estimated.

4 Applications in Machine Learning and Optimization

In this section we focus on three different applications in machine learning and stochastic optimiza-
tion, where natural gradient is employed for the optimization of a function defined over a statistical
model: the optimization of a real-valued function defined over Rn by its stochastic relaxation; policy
learning in reinforcement learning; and finally the training of a neural network by stochastic natu-
ral gradient descent. In these contexts, where often the statistical model used in the optimization
is a Gaussian model, as the number of variables increases, the computations of the natural gradi-
ent becomes computationally intractable, due to a complexity which is at least quadratic in n. For
this reason, often strong assumptions of independence among variables are made, so that the Fisher
information matrix becomes easier to invert. The parameterization we proposed in the previous sec-
tion can be an alternative approach to the identification of sub-models in the Gaussian distribution
for which the natural gradient can be computed efficiently.

The first example we consider is the optimization of a real-valued function f : Ω → R by means
of its Stochastic Relaxation (SR) [12, 13], cf. [11], i.e., we search for the optimum of f in Ω by
optimizing the expected value of the function itself over a statistical model M. This approach in
optimization is quite general and can be considered as a unifying perspective in many different fields.
We denote with F (p) :M→ R : p 7→ Ep[f ] the Stochastic Relaxation (SR) of f , i.e., the expected
value of f with respect to p in M. We look for the minimum of f by optimizing the stochastic
relaxation, which under some regularity conditions over the choice ofM is a continuous function
independently from the nature of Ω, either discrete or continuous. Solutions to the original problem
can then be obtained by sampling from optimal solutions of the relaxed function F . The search
for the optimum of F can be performed using different algorithms and techniques. For instance,
CMA-ES [8, 1] and NES [24] are two stochastic algorithms based on natural gradient descent, i.e.,
they update the parameters of a Gaussian distribution in the direction given by the natural gradient.

The second application we consider is given by reinforcement learning, and more in particular direct
policy-gradient methods for approximate planning in Markov Decision Problems (MDP), see the
seminar paper by Kakade [10] and later the work in [20], among the others. At each time step t, the
agent in state st chooses an action at according to th stochastic policy p(at|st), then it gets a reward
r(st, at) from the environment, which is used by the agent as a feedback to update the policy.
The goal of the agent is to learn the policy that maximizes the average reward over a family of
parametrized policies p(a|s;θ), which under some regularity conditions corresponds to a statistical
manifoldM. The problem can be solved by gradient descent, by taking the gradient of the average
discounted reward of the agent and updating the parameters of the distribution accordingly.

One of the earlier applications of the work of Amari on natural gradient was in the context of the
training of neural networks [3, 4]. More recently, natural gradient has gathered renewed attention in
the context of neural networks, and information geometry proved to be a general framework to de-
scribe different training algorithms recently proposed in the literature, see [19, 17]. Consider a mul-
tilayer feedforward neural network, specified by a vector of parameters w = (w1, . . . , wn)> ∈ Rn,
which represent the connection weights and thresholds of the network. Given an input x to the neu-
ral network, an output y = f(x;w) is produced. From an information geometric perspective, Amari
showed that the neural network can be represented as a manifold of distributionsM parameterized
by w, where the loss function F : M → R : w 7→ l(x,y;w) associates to each distribution the
loss of a given observation. The estimating the weights of the network can then be performed by
iteratively minimizing the loss function over the samples in the training set. In an online learning
setting, at each time step t the network observes a training point (xt,yy). The weights can be up-
dated according to a gradient descent update wt+1 = wt − λ∇̃l(x,y;w), with step size λ > 0,
where at each iteration we are evaluating the natural gradient of the loss as a function of the weights,
given the current training sample (xt,yt).
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