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Abstract

A matrix X € R™*" is positive semi-definite (PSD) if and only if it can be written
as the product UU T, for some matrix U. This paper uses this observation in
optimization: specifically, we consider the minimization of a convex function f
over the PSD cone X > 0, but via gradient descent on f(UU T), which is a non-
convex function of U. We focus on the case where U is set to be an n X r matrix
for some r < n, and correspondingly f satisfies restricted strong convexity.

We propose a novel step size and show that updating U via gradient descent results
in linear convergence to the top-r components of the optimum of f; provided we
start from a point which has constant relative distance to the optimum. We also
develop an initialization scheme for the “first-order oracle” setting.

1 Introduction

This paper considers the following optimization problem':

minimize f(X) subjectto X > 0, (1)
X ERnxn
where f : R™™ — R is a convex and smooth function, and X > 0 denotes the convex set
over positive semi-definite matrices in R™*™. 1In this paper we are interested in solving (1) via
the parametrization:
minimize f(UU') wherer < n. )
UERHXT‘

This is equivalent to (1) when r» = n, and otherwise is an approximation.

Note that the new problem has a very specific kind of non-convexity, arising because of representing
X as UUT. In particular, when 7 = n, this means that we are taking the original convex semi-
definite optimization problem, and deliberately making it non-convex via this representation. We
would choose r < n for computational reasons (as smaller  means lower computational complexity
for gradient descent), or statistical reasons (to prevent over-fitting).

Motivation. Problems like (1) commonly arise in optimization in general; within the machine
learning domain, a non-exhaustive list of applications includes matrix completion [8, 15, 16, 9],
affine rank minimization [14, 2], covariance / inverse covariance selection [13, 17, 23, 12], phase
retrieval [21, 6] and sparse PCA [11], just to name a few.

"We refer the reader to [3] for a more detailed description of this problem and of our algorithm.



Our motivation for studying the UU T parametrization comes from large-scale problem instances.
In problems where for example r is much smaller than n, U will be a much smaller matrix than
X, making it easier to update, store and iteratively optimize over. Even for the case where » = n,
standard approaches to solving (1), like projected gradient descent and its accelerated/second-order
variants, involve enforcing the X > 0 constraint at every iteration; this step can often constitute the
primary computational load of the overall iteration.

In contrast, the UU T reformulation in (2) automatically encodes the PSD constraint. Applying gra-
dient descent on f(UU ") does not require any eigenvalue computation, but the problem is now
non-convex. In this paper, we design an efficient initialization procedure, and then prove that updat-
ing U via gradient descent converges (fast) to optimal (or near-optimal) solutions.

Contributions. There has been a wide range of works that consider solving (1) in the factorized
form for specific f instances and achieve linear convergence rates [15, 21, 24, 25]. To the best
of our knowledge, this is the first paper that solves the re-parametrized problem (2) with the same
convergence rate guarantees for general convex functions f. We assume the first order oracle model
for access to f; that is, for any matrix X we can obtain the value f(X') and the gradient V f(X'). We
study how gradient descent, over U, performs in solving (2); this leads to factored gradient descent
algorithm and corresponds to the update rule

Ut =U-nVfUUY) - U.

Let X* be the solution to (1), and let X* be the best rank-r approximation (i.e., the top-r spectral
components) of X*. Our contributions in this work can be summarized as follows:

(i) Step size rule: Our main algorithmic contribution is a special choice of the step size 7. The
crucial insight here is that 1 needs to depend not only on the convexity parameters of f
(as is the case in standard convex optimization) but also on the top singular value of the
unknown optimum. Section 4 describes the precise step size rule, and also the intuition
behind it (via consideration of the second derivative with respect to U).

(i) Correctness and convergence under restricted strong convexity: For our main result, we con-
sider the case where f has restricted strong convexity (RSC), i.e., f satisfies strong-
convexity-like conditions, but only over rank-r matrices. We show that when f has RSC,
and we use the step size rule as above, U converges geometrically (i.e., with linear rate)
to a region close to X, when initialized from constant relative distance.

(#i1) Initialization: We focus on the case where we only have access to f via the first-order oracle:
specifically, we initialize based on the gradient at zero, i.e., V f(0). We show that, for
certain condition numbers of f, this yields a constant relative error initialization.

1.1 Related work

We briefly describe the work that utilizes factorization in the Burer and Monteiro [4, 5] sense. [4, 5]
popularized the idea of solving classic SDPs by representing the solution as a product of two factor
matrices. The main idea in such representation is to remove the positive semi-definite constraint by
directly embedding it into the objective. For linear objective f, they establish convergence guaran-
tees to the optimum but do not provide convergence rates.

Specialized algorithms — for objectives beyond the linear case — that utilize such factorization in-
clude matrix completion solvers [15], non-negative matrix factorization schemes [19], phase re-
trieval methods [21, 7, 6] and sparse PCA algorithms [18]. Restricted to the case of matrix com-
pletion, [15] shows linear convergence (with O(log(1/¢)) steps) in solving (2). [24, 25] study the
problem of recovering a low-rank PSD matrix from linear measurements. Both these approaches
admit linear convergence to the optimal solution by employing a careful initialization step. Nev-
ertheless, both [24, 25] only apply to simple quadratic loss objectives and not to generic convex
functions f.

For generic smooth convex functions, [22] use ideas from sparse approximation to greedily refine
U factors via rank-1 updates; however, no convergence rate guarantee is provided. Based on similar
ideas, [18] propose a sub-linearly convergent (i.e., O(1/¢) rate) framework, where the rank-1 update
is followed by a nonlinear improvement of the current solution using the L-BFGS algorithm.



At the time of submission, we became aware of the work of Chen and Wainwright [10]. There,
the authors propose a first-order optimization framework for the problem (1), where the same
parametrization technique is used to efficiently accommodate the PSD constraint. Withal, the
proposed algorithmic solution can accommodate extra constraints on X. Their results are of the
same flavor with ours: under proper assumptions, one can prove local convergence with O(1/¢) or
O(log(1/€)) rate and for f instances that even fail to be locally convex.

2 Preliminaries

Assumptions. We will investigate the performance of non-convex gradient descent for functions f
that satisfy strong convexity and restricted strong convexity.

Definition 2.1. Let f : S — R be a convex differentiable function. Then, f is m-strongly convex
if forany X, Y € S, the following holds:

FOY) 2 f(X) +(VF(X),Y = X) + 5|V = X7 3)

Definition 2.2. f is (m,r)-restricted strongly convex if for any rank-r matrices X,Y € S :
FOV) 2 f(X) (VS (X),Y = X)+ 5[y = X7 “)

M

This definition has previously appeared in [20, 1]. Given the above definitions, we define xk = - as

the condition number of function f.

3 Factored gradient descent

We are interested in solving (2) via gradient descent. For step size 7, the update rule is
Ut=U—-nVfUU")-U.

Factored gradient descent does this, but with two key innovations: initialization and a special step
size 7. We next provide some intuition behind the 7 choice. Initialization is discussed in Section 6.

4 Step size

Even though f is restricted strongly convex over X > 0, the fact that we operate with the non-convex
UU " parametrization means that we need to be careful about the step size 7; e.g., our constant 7
selection should be such that, when we are close to X™*, we do not “overshoot” the optimum X*.

To this end, let us consider a simple setting where U € R™*" with » = 1; i.e., U is a vector. For
clarity, denote it as u. Let f be a separable function with f(X) = Y. fi;(X;;). Furthermore, for

ij
f: R™" — R, define the function g : R” — R such that f(uu') = g(u). It is easy to compute:
Vg(u) = Vf(uu') u € R" and V>g(u) = mat (diag(VQf(uuT)) -vec (uuT)) + Vf(uu') e R™",

2 2 2 2 2 2
where mat : R" — R"™ " vec : R®™"™ — R"™ and, diag : R* *X®" — R" X" are the
matricization, vectorization and diagonalization operations, respectively; for the last case, diag
generates a diagonal matrix from the input, discarding its off-diagonal elements. We remind that

V/(uuT) € R™*™ and V2 f(uu') € R® *n" 2

Assume that the current putative estimate v is close to the optimum. Standard convex optimization
suggests that 77 should be chosen 1 < 1/|v24(.)|12, in the case when we are close to the optimum. Let
us interpret the hessian of g, as described in the expression above. We know that, due to smoothness
of f, |V2f(uuT)|l2 < M and, by assumption, uu " is close to X*. Similarly, the second term is
the gradient at a point close to X *; our surrogate in this case will be the gradient V f(X"), where
X0 is the initialization point. This suggests:

1 1
< 9700 & MIXL VX0

?Note that Hessian is diagonal for a separable function f(X) = >4y fii (Xij).



S Convergence

The following theorem characterizes the convergence rate of our scheme for f that satisfy (m,r)-
restricted strong convexity.

Theorem 5.1 (Convergence rate for rank-r estimate of X*). Let f : St — R be a M-smooth and

(m, r)-restricted strongly convex function, with restricted condition number k. = % Let X* be
its minimum over the set of PSD matrices, such that || X* — X}||r < gotgfl ) - g ). Let X0 =
UY(U°)T be a rank-r PSD matrix such that Dist(U°,U}) < po,.(UY), for p = 155= glg g Let

current zterate be U and X = UU". Let Dist(U,U}) < po,.(U}) and set the step size as 1 =
5 (M||XUH2+HVf(X°)H 5- Then, the new estimate Ut =U —nVf(X)- U satisfies

Dist(U*,U*)? < a - Dist(U,U})? + 8- || X* — X%, 5)

Further, U* satisfies

o mo,.(X*) - M
where o = 1 — Gy Ao rT) 99 P = mET RN
Dist(U*,U}) < po,(U}).

The theorem states that provided we (i) choose the step size based on a point that is constant relative
distance to U}, and (i7) we start from such a point, gradient descent on U will converge linearly
to a neighborhood of U. The above theorem immediately implies linear convergence rate for the
setting where f satisfies standard strong convexity with parameter m. This follows from observing
that standard strong convexity implies restricted strong convexity for all values of rank r.

Corollary 5.2 (Exact recovery of X*). Let X* be the optimal point of f, over the set of PSD matri-
ces, such that rank(X™*) = r. Consider X as in Theorem 5.1. Then, under the same assumptions
and with the same convergence factor o as in Theorem 5.1, we have

Dist(U*,U*)? < « - Dist(U, U*)?.

Further for » = n we recover the exact case of semi-definite optimization.

6 Initialization

In the previous section we have seen that gradient descent over U achieves linear convergence once
the iterates are closer to the optimum U. Since the overall problem is non-convex, intuition suggests
that we need to start from a “decent” initial point, in order to get provable convergence to the global
optimum. One way to satisfy this condition is to use one of the standard convex algorithms to obtain
U within constant error to U* and switch to factored gradient descent to get the high precision
solution. In this section we present a new way to compute initialization for general smooth and
strong convex f. The results extend to the case where the optimum X™* is of rank-r.

Theorem 6.1 (Initialization). Let f be a M -smooth and m-strongly convex function, with condition
number k = %, and let X* be its minimum over PSD matrices. Let X° be defined as:

0._ 1
X0 = mrm=vr@ann T+ (ZVH0), ©)
and X0 is its rank-r approximation. Let || X* — X*||. < pl|| X}, for some p. Then,

Dist(U?,U) < yo,.(U}), where y = 47(X})\/2r - (\/ — 2/ + 1 (srank'/? (X}) +p) + p)

While the above result guarantees a good initialization for only small values of «, in many applica-
tions [15, 21, 10], this is indeed the case and X° has constant relative error to the optimum.

7 Conclusion

In this paper, we focus on how to efficiently minimize a convex function f over the positive semi-
definite cone. Inspired by the seminal work [4, 5], we drop convexity by factorizing the optimization
variable X = UU T and show that factored gradient descent with a non-trivial step size selection
results in linear convergence, even though the problem is now non-convex. In addition, we present
a new initialization scheme that uses only first order information and guarantees to find a starting
point with small relative distance from optimum.
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