
Conjugate Descent for the Minimum Norm Problem

Alberto Torres-Barrán
Department of Computer Science
Universidad Autónoma de Madrid

28049 Madrid, Spain
alberto.torres@uam.es

José R. Dorronsoro
Department of Computer Science
Universidad Autónoma de Madrid

28049 Madrid, Spain
jose.dorronso@uam.es

Abstract

We propose a conjugate descent procedure for the Frank–Wolfe algorithm with
swap steps for the Minimum Norm Problem that leads to a substantial decrease in
the number of iterations required for the method to converge to a given precision
while basically only doubling the iteration cost.

1 Introduction

Given a sample S = {x1, . . . , xN} the Minimum Norm Problem seeks the pattern x in the convex
hull C(S) closest to the origin. More formally, MNP can be stated as a minizing the convex function
f(α) = (

∑
αpx

p) · (
∑
αqx

q) = αtQα over the simplex ∆N = {(α1, . . . , αN) : 0 ≤ αp ≤
N,
∑
αp = 1}; Q denotes the kernel matrix Qp,q = xp · xq . While one of the simplest convex

constrained minimization problems, it has received a more or less constant attention over the past 50
years or so. In fact, it was one of the problems considered by Frank and Wolfe in his seminal paper
[1], it is intimately linked with the SVM problem [2], has been recently revisited, accompanying the
renewed interest in Frank–Wolfe (FW) optimization [3] and has been shown to be equivalent to the
constrained version of the Lasso problem [4, 5].

MNP is usually solved by iterations of the form αk+1 = αk + ρkd
k, where dk is some descent

direction (i.e., dk · ∇f(αk) < 0). In its FW solution dk is taken as dk = dkFW = eLk − αk, with
Lk = arg minj∇f(αk)j ; then we automatically have αk+1 = (1− ρk)αk + ρke

Lk ∈ ∆N provided
0 ≤ ρk ≤ 1, i.e., we achieve projection free descent iterations. The drawback of this is that the
dkFW directions may result in a slow sublinear convergence [6] that cannot be improved. Several
variants of FW, such as the away steps in [7, 8] have been suggested; the better suited for MNP is
the Mitchell-Demnyanov-Malozemov (MDM) algorithm (referred as the swap FW method in [9]).

The MDM descent direction is dk = eLk−eUk with Uk = arg maxj{∇f(αk)j : αkj > 0}. Note that
the update αk + ρk(eLk − eUk) may not lie in ∆N , i.e., MDM is not projection–free, but, if needed,
the projection turns out to be a simple clip of ρk. MDM is guaranteed to have linear convergence
[10], that is, to have ‖αk+1 − α∗‖ ≤ λ‖αk − α∗‖, with λ < 1. In addition, its iterations only
need N products just to update ∇f(αk+1) = gk+1 as gk + ρk (QLk,j − QUk,j), because MDM’s
descent direction has only two non zero components (standard FW may need close to 2N products
to update αk+1 and ∇f(αk+1)). In fact, MDM is very close to SMO, the standard algorithm in
SVM for moderate–to–large size samples. However, MDM’s linear convergence is only guaranteed
once the face of C(S) facing the origin is reached. Moreover, it is easy to find examples where λ is
very close to 1 and convergence is thus slow. All this is due to the dk directions possibly being far
from optimal (very different from, say, −∇f(αk)).

Momentum is often used to improve descent directions, for instance, a successful momentum based
approach to standard FW has been proposed in [11]. Besides, momentum can be seen from a con-
jugate descent point of view. Writing the momentum term as mk = αk − αk+1 we can consider
momentum updates of the form αk+1 = αk + ρk

(
dk + βkm

k
)

= αk + ρk pk for appropri-

1

ate ρk, βk, with pk = dk + βkm
k. Then mk+1 = αk+1 − αk = ρkp

k, and it follows that
pk = dk + βk mk = dk + βk ρk−1 pk−1 = dk + σk−1 pk−1. Therefore, we can combine
a descent term with a properly scaled momentum term and arrive at the αk update writing first
α′ = αk + ρk

(
dk + σk−1p

k−1
)

for appropriate ρk and σk−1 and projecting it in ∆N if needed to
obtain the final αk+1.

It is well known in unconstrained quadratic minimization that taking dk = −∇f(αk), is equivalent
to conjugate gradient descent. There are however two computational drawbacks: the projection
step and a a potentially much greater O(N2) iteration complexity. We show next how both can be
avoided using a conjugate version of MDM that 1. only needs 2×N extra float products per iteration
and, 2. reduces the projection step to a simple clipping of the ρ coefficient. We will give the details
in the next section and numerically compare standard and conjugate MDM in Section 3; a short
discussion and conclusions section ends the paper.

2 Conjugate MDM Algorithm

Assume that the conjugate direction pk = dk + σk−1p
k+1 at step k has been chosen and that

the previous line minimization along pk−1 has been unclipped, i.e., the orthogonality condition
gk · pk−1 = 0 holds. We find the unconstrained ρ′k factor by line minimization along pk, that is,

by solving 0 = ∇f(αk + ρ pk) · pk, which yields ρ′k = −gk·pk
pk·Qpk = −gk·dk−βk−1gk·pk−1

pk·Qpk = −gk·dk
pk·Qpk .

Since gk · pk = gk · dk < 0, pk is always a descent direction. The unconstrained gain in f is now
1
2

(gk·dk)2

pk·Qpk and we can maximize that gain by choosing σk−1 as to minimize pk ·Qpk. This results

in σk−1 = − dk·Qpk−1

pk−1·Qpk−1 and implies a second orthogonality condition, pk ·Qpk−1 = 0.

We can summarize now our conjugate MDM updates. If the iteration ending in αk along pk−1 has
not been clipped, we 1. compute σk−1 and pk, 2. compute ρ′k and (α′)k+1 and, finally, 3. check
whether (α′)k+1 ∈ ∆N and, if not, clip it accordingly. On the other hand, if clipping has happened,
i.e., we have hit the boundary of ∆N , we simply reset pk−1 to 0 as it may lead to further boundary
hits; then pk = dk and we just perform a standard MDM update in the next iteration.

Working with MDM’s descent directions d = eL − eU greatly simplifies the previous compu-
tations. For this, we use an auxilar vector Γj = Qpj and constant δj = pj · Qpj that we

update at each iteration. We then have σk−1 = − dk·Qpk−1

pk−1·Qpk−1 = −d
k·Γk−1

δk−1 =
Γk−1
U −Γk−1

L

δk−1 ,
Γk = Q(dk + σk−1p

k−1) = QL − QU + σk−1Γk−1 (Qj denotes Q’sj–th column) and δk =
pk ·Qpk = dk ·Qpk = dk ·Γk = ΓkL−ΓkU . This result in a general conjugate MDM iteration where
starting from the previous α, its gradient g = Qα, and p,Γ and δ, we iteratively

1. Select L = argmini gi, U = argmaxαi>0 gi.

2. Get the kernel matrix columns QL, QU if not previously cached.

3. Compute σ = ΓL−ΓU

δ and update p = d+ σp, Γ = QL −QU + σΓ and δ = ΓL − ΓU .

4. Compute an unconstrained step ρ′ = gU−gL
δ and clip it to ρ according to ρ′, α and p.

5. Update α and g as α = α + ρ p; g = g + ρ Γ. If clipping has taken place, reset Γ = 0,
δ = 1.

We recover standard MDM from the preceding by setting σ = 0, p = d and Γ = QL −QU . If Np
and NΓ denote the number of non-zero components of p and Γ, the cost in produtcs of each iteration
is Np to update p in Item 3 and α in Item 5, NΓ to update Γ in Item 3 and N to update the gradient
g in Item 5. We expect NΓ ' N but Np should be� N and similarly the number of non-zero αi
should also be� N . Thus a conjugate iteration should have theoretical cost about twice as large as
that of a standard MDM iteration and should lead to faster training if the number of MDM iterations
are more than twice the number of CD MDM ones. In any case, note that the cost of the iterations
in which a non–cached kernel column matrix has to be computed will require a much larger N d
number of products when working with patterns in a d dimensional space or even more in a kernel
setting. We finish this section by briefly discussing clipping. First, notice that if

∑
j p

k−1
j = 0, we

also have
∑
j p

k
j = 0 and, hence,

∑
j α

k+1
j = 1. Thus, to ensure α ∈ ∆N , we only have to use a ρk

2

value so that 0 ≤ αkj +ρpkj ≤ 1. SetP+
k = {i : pki > 0} andP−k = {i : pki < 0}; we want 0 < ρk ≤

1−αk
i

pki
if i ∈ P+

k and 0 < ρk ≤ −α
k
i

pki
if i ∈ P−k . Thus, setting ρ+ = min

{
1−αk

i

pki
: i ∈ P+

k

}
and

ρ− = min
{
−α

k
i

pki
: i ∈ P−k

}
, we just take ρk = min{ρ′k, ρ+, ρ−}.

3 Numerical Experiments

We shall illustrate the smaller number of iterations needed by the conjugate MDM algorithm on
two different settings. The first one is a synthetic dataset where we generate for various d values
d–dimensional Gaussian blobs with a standard deviation of 1 centered at the origin (this makes it
relatively easy for standard MDM), to which we add an extra 1 component so that the MNP has
(0, . . . , 0, 1) as solution. In the second one we will work with a number of datasets from the UCI
repository and apply first the reduction proposed by M. Jaggi [4] of the constrained Lasso problem
with data matrix X , target y and constraint ρ to a Nearest Point Problem between y/ρ and the
convex hull spanned by the columns of X and −X . This can be easily transformed to an MNP one
by subtracting y/ρ from these columns [5].

In all cases we will apply the MDM algorithm and its conjugate variant considering all sample
patterns as starting points and counting the number of iterations until a convergence threshold is
achieved. For this we use the KKT conditions of MNP that imply at an optimal α that ∆ = ∆(α) =
maxαi>0∇f(α)i − minj ∇f(α)j ≤ 0. Accordingly, we will stop the iterations when ∆ ≤ ε for
some prefixed ε.

0 10 20 30 40 50 60
0

2

4

6

8

10

12

14
dim=10 eps=0.01 ratio=1.38

MDM

CD MDM

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20
dim=10 eps=0.001 ratio=1.54

MDM

CD MDM

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14

16
dim=10 eps=0.0001 ratio=1.60

MDM

CD MDM

0 500 1000 1500 2000 2500 3000 3500
0

5

10

15

20

25
ctscan eps=0.01 ratio=2.94

MDM

CD MDM

0 500 1000 1500 2000 2500 3000 3500
0

5

10

15

20

25
ctscan eps=0.001 ratio=3.22

MDM

CD MDM

0 500 1000 1500 2000 2500 3000 3500
0

5

10

15

20

25
ctscan eps=0.0001 ratio=3.43

MDM

CD MDM

Figure 3 (top) shows histograms of the number of iterations needed by standard and conjugate MDM
for random blob synthetic data with sample size 100 and dimension 50. The bottom row shows a
similar figure for the ctscan dataset, both with three different ε values (from left to right 0.01, 0.001
and 0.0001). The MDM histograms are clearly to the right of the conjugate ones and in almost
every case the ratio of the medians grows with the precision ε. This ratio is smaller for the synthetic
problem (relatively easy for MDM) but much more marked for ctscan. Similar ratios for the other
problems are given in Table 1. As it can be seen, conjugate MDM always improves on the standard
one, with high ratios in several cases.

4 Discussion and Conclusions

We have shown how a conjugate variant of the MDM algorithm (i.e., the Frank–Wolfe algorithm
with swap steps) for the MNP achieves a substantial reduction of the number of iterations needed to

3

Table 1: Median ratios of the number of iterations of standard and conjugate MDM.

ε dim 10 dim 50 dim 100 prostate housing year ctscan cpusmall

0.01 1.38 1.43 1.31 2.51 2.39 1.95 2.94 1.21
0.001 1.54 1.58 1.35 2.44 2.52 2.02 3.22 1.13

0.0001 1.60 1.73 1.36 2.44 2.51 2.07 3.44 1.14

arrive at a given convergence precision. While the MNP problem has an interest, both on its own
and also as it provides an alternative way of solving the constrained Lasso problem, a potentially
more interesting application of conjugate directions lies with the well known SMO algorithm to
build SVMs either for classification or regression. The basic structure of the SMO iterations is very
similar to the MDM ones and so would be the construction of conjugate descent directions. Thus a
large reduction in the number of iterations could also be expected as well as in training times. This
and also the consideration of momentum terms not only on α but also on the descent direction d is
the subject of ongoing research.

Acknowledgments

With partial support from Spain’s grants TIN2013-42351-P and S2013/ICE-2845 CASI-CAM-CM, and also
of the Cátedra UAM–ADIC in Data Science and Machine Learning. The first author is also supported by the
FPU–MEC grant AP-2012-5163. The authors also gratefully acknowledge the use of the facilities of Centro de
Computación Cientı́fica (CCC) at UAM

References

[1] M. Frank and P. Wolfe, “An algorithm for quadratic programming,” Naval Research Logistics
Quarterly, vol. 3, no. 1-2, pp. 95–110, 1956.

[2] J. L. Lázaro and J. R. Dorronsoro, “Simple proof of convergence of the SMO algorithm for
different SVM variants,” IEEE Trans. Neural Netw. Learning Syst., vol. 23, no. 7, pp. 1142–
1147, 2012.

[3] K. L. Clarkson, “Coresets, sparse greedy approximation, and the frank-wolfe algorithm,” ACM
Trans. Algorithms, vol. 6, no. 4, pp. 63:1–63:30, Sep. 2010.

[4] M. Jaggi, “An Equivalence between the Lasso and Support Vector Machines,” in Regulariza-
tion, Optimization, Kernels, and Support Vector Machines. CRC Press, 2014.

[5] C. Alaı́z, A. Torres, and J. R. Dorronsoro, “Solving constrained lasso and elastic net using ν–
svms,” in Proceedings of ESANN 2015, Bruges, Belgium, 22-24 April 2015, 2015, pp. 1382–
1390.

[6] E. Gilbert, “Minimizing the Quadratic Form on a Convex Set,” SIAM Journal on Control,
vol. 4, pp. 61–79, 1966.

[7] P. Wolfe, “Convergence theory in nonlinear programming,” in Integer and Nonlinear Program-
ming, J. Abadie, Ed. North–Holland, 1970, pp. 1–36.

[8] J. GuéLat and P. Marcotte, “Some comments on Wolfe’s ‘away step’,” Mathematical Program-
ming, vol. 35, no. 1, 1986.

[9] R. Ñanculef, E. Frandi, C. Sartori, and H. Allende, “A novel frank-wolfe algorithm. analysis
and applications to large-scale SVM training,” Inf. Sci., vol. 285, pp. 66–99, 2014.

[10] J. L. Lázaro and J. R. Dorronsoro, “Linear convergence rate for the MDM algorithm for the
nearest point problem,” Pattern Recognition, vol. 48, no. 4, pp. 1510–1522, 2015.

[11] E. Frandi, R. Ñanculef, and J. A. K. Suykens, “A partan-accelerated frank-wolfe algorithm for
large-scale SVM classification,” in 2015 International Joint Conference on Neural Networks,
IJCNN 2015, Killarney, Ireland, July 12-17, 2015, 2015, pp. 1–8.

4

	Introduction
	Conjugate MDM Algorithm
	Numerical Experiments
	Discussion and Conclusions

