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Abstract

Reweighted least-squares formulations of Subquadratic norms appear naturally
in machine learning and signal processing. The traditional algorithms associ-
ated with these formulations either do not have convergence guarantees or have
large per-step computation costs. In this paper, we derive primal-dual algorithms
with convergence rate O(1/T ) using the relevant proximal operators of the sub-
quadratic norm. This makes it possible to solve problems with subquadratic norms
resulting from wedge penalty or the Lovász extension of combinatorial penalties,
for which there are no efficient algorithms available.

1 Introduction
We consider optimization problems in w and η of the following form, which are also known as
reweighted least-squares formulations [1].

min
w∈Rd,η∈Rd

+

F (Xw) + λ
2

∑d
j=1

w2
j

ηj
+ λ

2 Γ(η). (1)

X ∈ Rn×d is the data matrix, and λ the regularization parameter. These are special instances of
the general framework minw F (Xw) + λΩ(w) with Ω(w) = minη≥0

∑d
i=1

w2
i

ηi
+ Γ(η) which are

known as subquadratic norms [2]. Subquadratic norms of these forms arise frequently in the context
of structured sparsity[2, 3, 4] with various applications in bioinformatics, image, text and audio
processing [2, 5]. For such norms, existing algorithms to solve 1 essentially require to know the
proximal operator for F ◦ X̃ : w 7→ F (X̃w) in each iteration where X̃ = X Diag

1
2 (η)1 (with

the value of η at that iteration). This is costly in many situations (except for the square loss and
piecewise-affine losses like the hinge loss). The simplest algorithm is the alternating optimization
(which has convergence issues in general because the objective functions is not smooth at 0). The
only generic first-order algorithm is subgradient descent, which is very slow. The lack of efficient
solutions for this primal problem leads us to reformulate the problem 1 as a saddle point problem,
for which primal-dual algorithms[6] can be used which have provable guarantees in the convergence
rates. We make the following contributions in this paper.

− We propose two primal dual algorithms with convergence rate O(1/T ) to solve problem (1).
− In section 4.1, we propose a primal-dual algorithm with a convergence rate O(1/T ) to solve

problem 1, when the proximal operator for F ◦X is known. In general, evaluating proxF◦X may

1For a vector a, Diag(a) refers to the diagonal matrix with a as diagonal entries.
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be expensive because of the dependence on X . However for the square loss, this computation
turns out to be very simple.

− In section 4.2, we propose another primal-dual algorithm with convergence rate O(1/T ). This
algorithm is applicable for all losses and norms such that proxF and proxΓ is available. Compar-
ing with the previous algorithm, for the commonly used loss functions, proxF is much simpler
to obtain than proxF◦X since it does not depend on X . This algorithm uses the data matrix
X only in terms of matrix-vector multiplications thus being a first order algorithm. Hence this
becomes the first ever generic algorithm to solve problem (1) for all loss functions and norms.
However if proxF◦X is easy to compute, it turns out that the previous algorithm will be more
efficient because of the independence of the algorithm from the data matrix.

− We apply the primal dual algorithm for the cases of Γ being the wedge penalty, and the Lovász
extension of a combinatorial penalty. There has not been an efficient algorithms with provable
guarantees in convergence rates for these problems, which are instances of the problem (1). Our
experiments show clear improvement over the state-of-the-art solutions for these problems.

2 Examples of Subquadratic norms
We review the examples of the function Γ in (1) derived from the wedge penalty and combinatorial
penalties, for which no efficient algorithm is available.

Wedge penalty. By adding ordering constraints on the vector η, we may get norms that favor certain
sparsity patterns. The simplest example is the wedge penalty, so that:

Γ(η) = η>1d + Iη1>···>ηd>0(η). (2)

This penalty which mandates η to be a decreasing vector in its coordinates, encourages the model w
to be of the same pattern. As studied in [3], proxΩ is difficult to compute whereas proxΓ is easily
obtained from isotonic regression in O(d) time by the pool-adjacent-violator algorithm [7].

Convex relaxation of combinatorial penalties [4]. We consider Γ(η) = f(η) where f is the
Lovász extension of a non-decreasing submodular function [8, 9]. These norms extend the grouped
`2-norms by favoring certain sparsity patterns over others. In order to satisfy the constraint above,
we impose that infA⊂V f(1A)/|A| = 1. As shown in [9], the proximal operator may be easily ob-
tained from the corresponding least-squares problem (by thresholding), for which many algorithms
exist (see, e.g., [10] for cut-based functions).

3 Chambolle-Pock’s primal dual algorithm [6]
In this section, we set up the primal dual framework by following the presentation of Chambolle and
Pock [6], and consider a generic problem of the form

minu∈U maxv∈V v
>Ku+G(u)−H∗(v), (3)

with a proper strongly convex function H∗ : V → R ∪ {+∞} with strong convexity parameter
γ > 0 and a proper convex function G : U → R ∪ {+∞}, for which we can compute the proximal
operators proxσH∗ and proxτG for any positive σ and τ . The primal dual algorithm (CP) detailed as
Algorithm 2 in [6] solves the above defined problem with convergence rate O(1/T 2) if either G or
F ∗ is strongly convex. If both are not strongly convex, the rate reduces to O(1/T ). It is to be noted
CP only needs black box operators needed for proxH∗ and proxG, and accesses K only through
matrix-vector products, and hence strictly first order in nature. For the special case K = I , CP is
shown to be equivalent to ADMM. This algorithm requires initializing the primal and dual stepsizes
σ and τ respectively. We initialize them as

σ = 1
‖K‖

‖v∗−v0‖2
‖u∗−u0‖2 , τ = 1

‖K‖
‖u∗−u0‖2
‖v∗−v0‖2 . (4)

The derivation for these choices are omitted for the sake of space. Since it is not possible to calculate
σ and τ exactly in practice, we will compute rough estimates for them using the information we have.

4 Primal-Dual Formulation for Subquadratic Norms
We can reformulate (1) as

min
w∈Rd, η∈Rd, t∈Rd

F (Xw) + λ
2 Γ(η) + λ1>d t+

∑d
j=1 IK(wj , ηj , tj), (5)
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where K = {(a, b, c) ∈ R3, a2 6 2bc, b > 0, c > 0} is the rotated second order-cone. which can
naturally be split in two simple terms F (Xw) + λ

2 Γ(η) +λ1>d t and
∑d
j=1 IK(wj , ηj , tj). The cone

K is self-dual and the proximal operator for
∑d
j=1 IK(wj , ηj , tj) involves computing the orthogonal

projection into K. The projection of (a, b, c) into K may be obtained by computing the positive part

of the 2 × 2-matrix
(

b a/
√

2
a/
√

2 c

)
. Depending whether the term F (Xw) = F ◦X(w) is left as

is or not, we obtain a second-order algorithm ADMM (that accesses X through linear systems) or a
first-order algorithm Chambolle-Pock (that accesses X by matrix-vector products).

4.1 ADMM formulation of problem (1)

By Fenchel duality, Eq. (5) may be cast as the saddle-point problem

min
w∈Rd, η∈Rd, t∈Rd

max
κ∈Kd

(
F (Xw) +

λ

2
Γ(η) + λ1>d t

)
−

d∑
j=1

IK(κj) +

d∑
j=1

κ>j (wj , ηj , tj). (6)

We can equate this formulation to (3) by denoting u = [(wj , ηj , tj)]
d
j=1, v = κ = [(δj , βj , νj)]

d
j=1,

K = −I , G(u) = F (Xw) + λ
2 Γ(η) + λ1>d t and H∗(v) =

∑d
j=1 IK(κj). Computing proxG

involves computing the proximal operator for F ◦X . Since K = −I , the CP algorithm is invariant
to the data matrixX . We refer to the application of CP to this instance as “ADMM-η”. From Eq. (4),
it is easy to see that we can derive estimates of the stepsizes for for the case of Square loss and `1
norm combination as as σ = ‖X‖2/

√
3n and τ =

√
3n/‖X‖2. In our experiments, these stepsize

choices work well for the other norms and losses.

4.2 Chambolle-Pock
The previous reformulation (6) may not be applicable when it is difficult to compute proxF◦X .
Hence we reformulate (6) using Fenchel’s duality for F as

min
w∈Rd, η∈Rd, t∈Rd

max
α∈Rn, κ∈Kd

α>Xw−F ∗(α)+
λ

2
Γ(η)+λ1>d t+r

d∑
j=1

κ>j (wj , ηj , tj)−r
d∑
j=1

IK(κj)

(7)
This is also an instance of the problem in Eq. (3) with the following choices: u = [(wj , ηj , tj)]

d
j=1,

v = (α, κ), K = [X, rI], G(u) = λ
2 Γ(η) + λ1>d t and H∗(v) = F ∗(α) + r

∑d
j=1 IK(κj).

Comparing this with ADMM-η, we only require proxF which is much easier to obtain than
proxF◦X . We refer to this algorithm as “CP-η”. This emerges as the most general algorithm with
least assumptions on the functions involved. In this formulation, ‖K‖2 = ‖X>X + r2I‖2 6
‖X‖2 + r2. We have introduced the constant r to balance the scale of α, against κ, with r = ‖X‖.
Similar to the previous case, we can derive stepsize estimates as σ = 1/n and τ = n/(2‖X‖2).

5 Experiments
The algorithms for the problem (1) which we use for comparison purposes are (a) Alternating mini-
mization between w and η denoted as “Alt-η”, (b)“FISTA-η”, which represents the (1) as a function
of η similar to SimpleMKL [11], and (c) generic subgradient descent algorithm (“Subgrad”). We
compared the results for the settings of low and high correlations among the columns of X2. We
have fixed n = d = 5000, λ = 0.01 and set the stopping criterion to be the certified duality gap less
than the convergence threshold of 10−3.

5.1 Wedge penalty
When the norm Ω is the wedge penalty, the usual algorithms which access proxΩ are not applica-
ble. We consider the Square loss and the Hinge loss as examples of smooth and non-smooth loss
functions. The plots of the objective value versus iterations is given for the Hinge loss in Figure 1.

Square loss. Here the ADMM-η algorithm requires solving a linear system, which is constant across
iterations and hence compares against CP-η and subgradient descent as a first order algorithm. For
ADMM-η running times do not vary across the two different settings of correlation (which is true

2The details of experiments are omitted here for the sake of space.
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Figure 1: Primal dual gap convergence for the hinge loss and wedge penalty combination. Top: first-
order algorithms. Bottom: second-order algorithms. Left: low correlation. Right: high correlation.

for the other loss / norms also). Second-order algorithms Alt-η and FISTA-η are similar to the Lasso
case, will have very high per-step cost, as shown in the table below which shows the running time
in seconds. Overall, our new primal-dual algorithms outperform existing ones.

Loss Corr. Alt-η FISTA-η ADMM-η subgrad CP-η
Square Low 232 1997 165 - 121
Square High 2510 4187 277 - 830
Hinge Low 245 2893 2765 - 269
Hinge High 2721 9632 2043 - 2954

Hinge loss. When we move to the hinge loss, CP-η is the only available first order algorithm, which
gives O(1/T ) compared to O(1/

√
T ) given by subgradient descent. The plots are given in Figure 1

and the corresponding with running times (in seconds) are given in the above table.

5.2 Combinatorial penalty

We choose the submodular function S(A) = max(A). The Lovász extension f(η) =
∑d
i=1 ‖η(i :

d)‖∞. Γ(η) = f(η) leads to a subquadratic norm, which can be proven to be the same norm which
we get using the Wedge penalty. And as shown in [12], the proximal operator of Γ can be derived
using composition of the proximal operator for the `∞ norm. We show below the corresponding
running times of the algorithms.

Loss Corr. Alt-η FISTA-η ADMM-η subgrad CP-η
Square Low 183 2512 210 - 152
Square High 1980 4221 255 - 798
Hinge Low 202 3103 2976 - 220
Hinge High 1962 9925 2563 - 3032

6 Conclusion

In this paper, we showed how primal-dual algorithms could be extended to reweighted least-squares
formulations, with simple algorithms improving over the state of the art.
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