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Abstract

We take a new look at parameter estimation for Gaussian Mixture Models
(GMMs). Specifically, we propose Riemannian manifold optimization as a power-
ful counterpart to Expectation Maximization (EM). An out-of-the-box invocation
of manifold optimization, however, fails spectacularly: it converges vastly slower
than EM. Using intuition from manifold convexity, we propose a reformulation
that has remarkable empirical consequences. It makes manifold optimization not
only match EM (which is a highly encouraging result in itself, given the poor
record other nonlinear methods have had against EM) but also outperform it in
practical settings, while displaying much less variability in running times.

1 Introduction
Gaussian Mixture Models (GMMs) are key to numerous applications [5, 10, 16, 18]. And for es-
timating their parameters, Expectation Maximization (EM) [9] remains the de facto approach. Al-
though other numerical approaches have been considered, usual nonlinear methods such as conju-
gate gradients, quasi-Newton, Newton, are typically seen to be much inferior to EM [31].

The main difficulty in applying usual nonlinear optimization techniques to GMMs is the positive
definiteness (psd) constraint. This constraint is difficult to handle, especially with increasing data
dimensionality. A partial remedy is to use Cholesky decompositions, as was also exploited for
semidefinite programming in [7], though at the cost of added nonconvexity. Alternatively, one can
resort to interior-point methods [20]. Both approaches turn out to be much inferior to EM.

Considering that the psd constraints make parameter estimation numerically hard, an attractive idea
is to use Riemannian manifold optimization [1], with the hope that by operating on the manifold
of psd matrices, we would implicitly satisfy the psd constraints and thereby have a better focus
on likelihood maximization. Unfortunately, this line of thought turns out to be a complete failure!
Should we thus discard manifold optimization too? No. But we do need to develop a more careful
approach, as we now outline.

Intuitively, the mismatch lies in the geometry. Recall that for GMMs the M-step of EM is a Euclidean
convex optimization problem (which even has a closed form solution), whereas the log-likelihood
is not manifold convex1 even for a single Gaussian. This suggests that it may be fruitful to consider
a reformulation which makes at least the single component gaussian log-likelihood manifold con-
vex. This intuition turns out to have remarkable empirical consequences (Fig. 1), which ultimately
enables manifold optimization to compete with EM and often even surpass it.

Contributions. In light of the above background, the main contributions of this work are as follows:
– Introduction of manifold optimization as a powerful numerical tool for GMM parameter estima-

tion. Most importantly, we show a reformulation key to making manifold optimization succeed.
– A solver based on manifold-LBFGS; our contribution here is the design and implementation of

a powerful line-search procedure. This line-search helps ensure convergence, and beyond that, it
helps LBFGS outperform both EM and the usual manifold conjugate gradient (CG) method; our
solver may thus also be of independent interest.
1That is, convex along geodesic curves on a manifold.
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Related work. The published work on EM is huge, so a summary is impossible and we only men-
tion a few lines of related work. Xu and Jordan [31] examine several aspects of EM for GMMs and
counter the claims of Redner and Walker [22], who claimed EM to be inferior to general purpose
nonlinear programming. However, it is well-known, see e.g., [22, 31], that EM can attain good like-
lihood values rapidly, and it scales to larger problems than amenable to usual second-order methods.
Local convergence analysis of EM is available in [31], with more refined and precise results in [15].
Our paper develops manifold LBFGS, which can also display local superlinear convergence.

The idea of manifold optimization is new for GMM, but in itself it is a well-developed branch of
nonlinear optimization. A classic reference is [27]; a more recent work is [1]; and even a MATLAB
toolbox exists now [6]. In machine learning, manifold optimization has witnessed increasing inter-
est2, e.g., for low-rank optimization [13, 28], or optimization based on geodesic convexity [25, 30].

2 Background and problem setup
We begin with the Gaussian Mixture Model (GMM) for vectors x ∈ Rd, which assigns the density

p(x) :=
∑K

j=1
αjpN (x;µj ,Σj),

in which pN is a Gaussian with mean µ ∈ Rd and covariance Σ � 0. Given i.i.d. samples
{x1, . . . ,xn}, we estimate {µ̂j ∈ Rd, Σ̂j � 0}Kj=1 and α̂ ∈ ∆K , the K-dimensional probabil-
ity simplex, via maximum-likelihood. This requires solving the ptimization problem:

max
α∈∆K ,{µj ,Σj�0}Kj=1

∑n

i=1
log
(∑K

j=1
αjpN (xi;µj ,Σj)

)
. (2.1)

Problem (2.1) in general is hard [17].3 But our focus is more pragmatic: similar to EM, we also seek
to efficiently compute local solutions; we approach (2.1) via manifold optimization.

2.1 Manifolds and geodesic convexity
A smooth manifold is a non-Euclidean space that locally resembles Euclidean space [14]. For op-
timization, it is more convenient to consider Riemannian manifolds (smooth manifolds equipped
with an inner product on the tangent space at each point) [1, 27]. Algorithms on manifolds often
rely geodesics, i.e., curves that (locally) join points along shortest paths. Geodesics help generalize
Euclidean convexity to geodesic convexity. In particular, say M is a Riemmanian manifold, and
x, y ∈M; also let

γxy : [0, 1]→M, γxy(0) = x, γxy(1) = y,
be a geodesic joining x to y. Then, a set A ⊆ M is geodesically convex if for all x, y ∈ A there is
a geodesic γxy contained within A. Further, a function f : A → R is geodesically convex if for all
x, y ∈ A, the composition f ◦ γxy : [0, 1]→ R is convex in the usual sense.

The manifold of interest to us in this paper is Pd, the manifold of d× d symmetric positive definite
matrices. On Pd the geodesic is given by γΣ1,Σ2

(t) := Σ
1/2
1 (Σ

−1/2
1 Σ2Σ

−1/2
1 )tΣ

1/2
1 for 0 ≤ t ≤ 1.

A function f : Pd → R if geodesically convex on Pd if it satisfies
f(γΣ1,Σ2

(t)) ≤ (1− t)f(Σ1) + tf(Σ2), t ∈ [0, 1], Σ1,Σ2 ∈ A.
Such functions can be nonconvex in the Euclidean sense, but remain globally optimizable due to
geodesic convexity. This property has been important in some matrix theoretic applications [4, 26],
and has gained more extensive coverage in several recent works [23, 25, 30].

2.2 Problem reformulation
We begin with parameter estimation for a single Gaussian: although this has a closed-form solution
(which ultimately benefits EM), it requires more subtle handling when applying manifold optimiza-
tion. Maximum likelihood parameter estimation for a single Gaussian

max
µ,Σ�0

L(µ,Σ) :=
∑n

i=1
log pN (xi;µ,Σ). (2.2)

Although (2.2) is convex in the Euclidean sense, but it is not geodesically convex. To fix this
mismatch, we invoke a simple reformulation4 that has far-reaching impact. We augment the vectors

2Manifold optimization should not be confused with “manifold learning” a separate problem altogether.
3Though recent work shows that under strong assumptions, it has polynomial smoothed complexity [11].
4This reparamerization in itself is probably folklore; its role in GMM optimization is what is crucial here.
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(a) Single Gaussian
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(b) Mixture of seven Gaussians

Figure 1: The effect of reformulation on convergence speed (d = 35); notice x-axis is on a logarithmic scale.

xi by an extra dimension, and consider yTi = [xTi 1]; therewith, we transform (2.2) into the problem

max
S�0

L̂(S) :=
∑n

i=1
log qN (yi;S), (2.3)

where we define qN (yi;S) := 2π exp( 1
2 )pN (yi;S). Prop. 1 proves the key property of (2.3).

Proposition 1. Let φ(S) ≡ −L̂(S), where L̂(S) is as in (2.3). Then, φ is geodesically convex.

Theorem 2.1 shows that solving the reformulation (2.3) also solves the original problem (2.2).

Theorem 2.1. If µ∗,Σ∗ maximize (2.2), and if S∗ maximizes (2.3), then L̂(S∗) = L(µ∗,Σ∗) for

S∗ =

(
Σ∗ + µ∗µ∗T µ∗

µ∗T 1

)
.

Thm. 2.1 shows that the reformulation is “faithful” as it leaves the optimum unchanged. Figure 1
shows the true impact of this reformulation. Thm. 2.2 states the mixture model version of Thm. 2.1.
Theorem 2.2. A local maximum of the reparameterized GMM log-likelihood is a local minimum of
the original GMM log-likelihood.

Finally, we also replace the constraint α ∈ ∆K to make the problem unconstrained. We do this via
a commonly used change of variables [12]: ηk = log( αk

αK
), k = 1, . . . ,K − 1. Assume ηK = 0 to

be a constant, then the final optimization problem is given by:

max
{Sj�0}Kj=1,{ηj}

K−1
j=1

L̂({Sj}Kj=1, {ηj}K−1
j=1 ) :=

n∑
i=1

log
( K∑
j=1

exp(ηj)∑K
k=1 exp(ηk)

qN (yi;Sj)
)

(2.4)

We view (2.4) as a manifold optimization problem; specifically, it is an optimization problem on the
product manifold

(∏K
j=1 Pd

)
× RK−1. Let us see how to solve it.

2.3 Manifold Optimization
Successful large-scale (Euclidean) optimization methods such as conjugate-gradient and LBFGS,
combine gradients at the current point with gradients and descent directions from previous points to
generate a descent direction at the current point. To adapt such algorithms to manifolds, in addition
to defining gradients on manifolds, we also need to define how to transport vectors in a tangent space
at one point, to vectors in a different tangent space at another point. We refer the reader to [1, 27]
for an in depth introduction to manifold optimization.

Different variants of LBFGS can be defined depending where to perform vector transport. We found
that the version developed in [26] gives the best performance. We implemented this algorithm
together with a crucial Wolfe line-search algorithm; we omit details due to lack of space.

3 Experimental Results
We report performance on both real and simulated data. We initialized mixture parameters using
k-means++ [2], and started all methods using the same initialization. The termination criteria are
also the same for all methods: they stop when the difference of average log-likelihood falls below
10−6, or when the number of iterations exceeds 1500.
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Algorithm 1: Sketch of optimization algorithms (CG, LBFGS) on manifold

Given: Riemannian manifoldM with Riemannian metric g; parallel transport T onM; exponential map
R; initial value X0; a smooth function f
for k = 0, 1, . . . do

Obtain a descent direction based on stored information and gradf(Xk) using defined g and T
Use line-search to find α such that it satisfies appropraite conditions
Calculate Xk+1 = RXk (αξk)
Based on the memory and need of algorithm store Xk, gradf(Xk) and αξk

end for
return Xk

Simulated Data. EM’s performance is well-known to depend on the degree of separation of the
mixture components [15, 31]. To assess the impact of this separation on our methods, we generate
data as proposed in [8, 29]. The distributions are sampled so their means satisfy:

∀i 6=j : ‖mi −mj‖ ≥ cmax
i,j
{tr(Σi)− tr(Σj)},

where c models the degree of separation. We apply different algorithms for the case where there
is no eccentricity (condition number of the covariance matrix); the results are shown in Table 1.
For the low separation case c = 0.2, the problem becomes ill-conditioned. As predicted by theory,
EM converges very slowly in this case; Table 1 confirms this claim. The performance of powerful
optimization approaches like CG and LBFGS also degrades [21]. But both CG and LBFGS suffer
lesser than EM, and LBFGS fares noticeably better than CG.

Real Data. GMMs have been reported to be a good fit for some natural images [32]. We extracted
200,000 image patches of size 6 × 6 from images and subtracted the DC component, leaving us
with 35-dimensional vectors. Performance of different algorithms are reported in Table 2. As for
simulated results, performance of EM and manifold CG on the reparametrized parameter space is
similar. Manifold LBFGS converges notably faster (except for K = 6) than both EM and CG.
Without our reformulation, performance of the manifold methods degrades substantially; because
the experiments take too long to run, we report only the degraded behavior of CG, which runs about
20 times slower than reparametrized CG and LBFGS.

EM Algorithm LBFGS Reparametrized CG Reparametrized
Time (s) ALL Time (s) ALL Time (s) ALL

c = 0.2 K = 2 72.9 ± 37.7 17.6 40.6 ± 21.6 17.6 49.4 ± 31.7 17.6
K = 5 396.7 ± 136.6 17.5 156.1 ± 80.2 17.5 216.3 ± 51.4 17.5

c = 1 K = 2 7.0 ± 8.4 17.1 13.9 ± 13.7 17.0 16.7 ± 18.7 17.0
K = 5 38.6 ± 67.0 16.2 43.8 ± 38.5 16.2 58.4 ± 47.4 16.2

c = 5 K = 2 0.2 ± 0.1 17.1 3.0 ± 0.5 17.1 2.7 ± 0.8 17.1
K = 5 26.4 ± 55.3 16.1 20.2 ± 18.4 16.1 23.3 ± 27.8 16.1

Table 1: Speed and ALL comparisons for d = 20, e = 1.

EM Algorithm LBFGS Reparametrized CG Reparametrized CG Usual
Time (s) ALL Time (s) ALL Time (s) ALL Time (s) ALL

K = 2 16.61 29.28 14.23 29.28 17.52 29.28 947.35 29.28
K = 3 90.54 30.95 38.29 30.95 54.37 30.95 3051.89 30.95
K = 4 165.77 31.65 106.53 31.65 153.94 31.65 6380.01 31.64
K = 5 202.36 32.07 117.14 32.07 140.21 32.07 5262.27 32.07
K = 6 228.80 32.36 245.74 32.35 281.32 32.35 10566.76 32.33
K = 7 365.28 32.63 192.44 32.63 318.95 32.63 10844.52 32.63
K = 8 596.01 32.81 332.85 32.81 536.94 32.81 14282.80 32.58
K = 9 900.88 32.94 657.24 32.94 1449.52 32.95 15774.88 32.77
K = 10 2159.47 33.05 658.34 33.06 1048.00 33.06 17711.87 33.03

Table 2: Speed and ALL comparisons for natural image data d = 35.
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[27] C. Udrişte. Convex functions and optimization methods on Riemannian manifolds. Kluwer Academic,
1994.

[28] B. Vandereycken. Low-rank matrix completion by riemannian optimization. SIAM Journal on Optimiza-
tion, 23(2):1214–1236, 2013.
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