
Parallelizing Randomized Convex Optimization

Michael Kamp1, Mario Boley2,3,1, and Thomas Gärtner4

1Fraunhofer IAIS, michael.kamp@iais.fhg.de
2Fritz Haber Institute of the Max Planck Society, Berlin, boley@fhi-berlin.mpg.de

3Max Planck Institute for Informatics, Saarbrücken
4University of Nottingham, thomas.gaertner@nottingham.ac.uk

Abstract

We define a general parallelization scheme for randomized convex optimization
algorithms which optimize not directly observable functions. The scheme is con-
sistent in the sense that it is able to maintain probabilistic performance guarantees
of the underlying algorithm. At the same time—due to the parallelization—it
achieves a speedup over the optimization algorithm of Θ(c

1/lg d), where c is the
number of employed processors and d is the dimension of the solutions. A par-
ticular consequence is that all convex optimization problems that can be solved in
polynomial time with probabilistic performance guarantees can also be solved effi-
ciently in parallel, i.e., in polylogarithmic time on polynomially many processors.
To achieve that, the scheme runs the algorithm in parallel to produce intermediate
solutions of a weak guarantee and improves them by iteratively replacing solution
sets by their Radon point.

1 Introduction

We consider the problem of parallelizing randomized optimization algorithms in settings where
the quality of the solution cannot be directly observed but instead a probabilistic guarantee on the
solution is provided. This subsumes several machine learning and optimization settings such as
(regularized) empirical risk minimization for convex losses [14], stochastic convex optimization [11]
and convex programming [3]. Assume an algorithm A that accepts a numerical parameter N ∈
N (e.g., in machine learning it denotes the number of training examples) and finds approximate
solutions to an optimization problem w∗ = arg minw∈W f(w) , where the solution spaceW ⊆ Rd
is a convex set and f : W → R is a quasi-convex function that cannot be directly observed. We
call A consistent, if it provides a probabilistic guarantee of the following form. Its solutions are
distributed according to a distribution DN :W → [0, 1] which satisfies that for all ε > 0 and ∆ ∈
(0, 1) there exists an N0 ∈ N such that for all N ≥ N0 it holds that

Pw∼DN (|f(w)− f(w∗)| > ε) < ∆ . (1)

Typically, for more strict (ε,∆)-guarantees a larger N is required but that increases the runtime
cost T (N). Furthermore, this runtime is usually at least polynomial in N so that for large-scale
problems, in order to achieve a desired guarantee, substantial scalability issues arise. Thus, an effi-
cient and consistent parallelization is desirable, i.e., one that improves the order of the runtime with
the number of employed processors, while retaining (∆, ε)-guarantees. Several such parallelization
schemes already exist for concrete algorithms in specific settings but none of them is general and
retains consistency at the same time [5, 10, 12, 15].

In this paper we provide a scheme that is consistent, efficient and generally applicable to all random-
ized convex optimization algorithms. Our main idea is to run the serial optimization algorithm A
in parallel on c processors, each with a small parameter n, resulting in a short runtime but also in a

1

Algorithm 1: Radon parallelization
input : algorithm A, parameter N ∈ N, number of processors c ∈ N
output: solution w ∈ W ⊆ Rd

1: n← N/c
2: run A(n) on each of the c processors in parallel
3: obtain intermediate solutions w1, . . . , wc
4: r ← d+ 2
5: S = {w1, . . . , wc}
6: for i = 1, . . . , blogr cc do
7: partition S into subsets S1, . . . , S|S|/r of size r
8: calculate r(S1), . . . , r(S|S|/r) in parallel
9: S ← {r(S1), . . . , r(S|S|/r)}

10: end for
11: return a random w ∈ S

weak solution. We then combine these weak solutions using the iterated Radon point algorithm [4]
to boost the confidence to the desired value 1−∆. A Radon point is defined as follows.

Definition 1 (Radon [9]). For S ⊂ Rd a Radon point r(S) is any point r ∈ 〈A〉 ∩ 〈B〉 for any
A,B ⊂ S with A∪B = S, A∩B = ∅ and 〈A〉 ∩ 〈B〉 6= ∅. Here, 〈A〉 denotes the convex hull of A.
The Radon number r ∈ N is the smallest number such that for all sets S with |S| ≥ r a Radon point
exists. For Rd it holds that r = d+ 2 and a Radon point can be constructed in time r3 = (d+ 2)3.

The proposed scheme, denoted Radon parallelization R and given in Alg. 1, gets as input the pa-
rameters N, c ∈ N. It runs c instances of the algorithm A with parameter n = N/c in parallel on the
given processors (line 1-2). Then the set of solutions (line 5) is iteratively partitioned into subsets of
size r (line 7). For each subset, its Radon point is then calculated in parallel (line 8). The final step
of each iteration is to replace the set of solutions by the set of their Radon points (line 9).

2 Consistency and Runtime

In the following, we show that Radon parallelization R is consistent and analyze its runtime for a
desired (∆, ε)-guarantee with respect to the runtime TA(N) of A that is to be parallelized. For that,
we consider the properties ofAwith respect to its input parameterN ∈ N; other possible parameters
are assumed fixed for the purpose of parallelization. Furthermore, for the analysis we fix ε > 0 and
analyze the dependency of ∆ on N . Note that an improvement in ∆ for a fixed ε is similar to an
improvement in ε for a fixed ∆.

For a Radon point r(W) it holds for all measures P over W ⊆ Rd, a quasi-convex function f ,
all w ∈ W and all ε ∈ R+ that P (|f(r(W))− f(w∗)| > ε) < (rP (|f(w)− f(w∗)| > ε))

2 [8].
In particular, the result of the iterated Radon point algorithm improves ∆ exponentially with
h = logr |W|, i.e., P (|f(r)− f(w∗)| > ε) < (rP (|f(w)− f(w∗)| > ε))

2h . For rh solutions pro-
duced byAwith confidence 1−δ, combining these solutions with the iterated Radon point algorithm
results in a solution with a confidence of 1−(rδ)2h , i.e., ∆ = (rδ)2h . In order to ensure that ∆ < δ,
the algorithm has to achieve δ < r−2h/(2h − 1) when run with parameter n. If A is consistent, there
always exists a minimum parameter n0 ∈ N such that A reaches this confidence for all n ≥ n0.
That is, the parameters N, c have to be set so that N/c ≥ n0. It follows that ifA is consistent thenR
is consistent as well.

We now analyze the runtime TR(N, c) of R using c processors. It can be decomposed into the
runtime TA(n) of A executed on each processor in parallel with n = N/c and the runtime of the
iterated Radon point algorithm. The Radon points in each level can be calculated in parallel with
a runtime of r3 for each Radon point [4]. The h = logr c levels can be calculated consecutively
resulting in a runtime of r3 logr c for the calculation of the final Radon point. With this, the runtime
of R is TR(N, c) = TA(N/c) + r3 logr c. Using this result, we can follow that any polynomial
time randomized convex optimization algorithm can be efficiently computed in parallel, i.e., with

2

polylogarithmic time on polynomially many processors. This is not trivial, since it requires that the
overhead for combining the parallel solutions is at most logarithmic in the number of processors.
Proposition 2. Let A be a consistent randomized convex optimization algorithm with polyno-
mial runtime, i.e., TA(N) ∈ O(Nk). Then, the parallelization R of this algorithm has runtime
O
(
(log2N)k

)
on O(N) processors for N > 2n0 ∈ N.

Proof. Let n0 ∈ N be the minimum parameter such that A achieves a confidence of 1/r2. Set the
number of processors to c = N/log2 N , i.e., N/c ≥ n0. Then the runtime ofR is

TR(N, c) = TA

(
N

c

)
+ r3 logr c ∈ O

(
(log2N)

k
+ logr

(
N

log2N

))
∈ O

(
(log2N)

k
)

This runtime corresponds to the runtime of decision problems in the randomized variant of Nick’s
Class RNC [1]. Thus, with the proposed parallelization scheme we show that any problem in the
optimization variant of the complexity class P , denoted optP [7], is in the optimization variant of
RNC.

3 Speedup for Polynomial-Time Algorithms

The actual runtime of R is determined by the runtime of A in N and the dependency between
N and the desired (ε,∆)-guarantee. In this section we consider scenarios in which the pa-
rameter N required to achieve a given ∆ for fixed ε depends polylogarithmically on 1/∆, i.e.,
N(∆) =

(
αε + βε log2

1
∆

)k
, for some constants αεβε ∈ R+, k ∈ N. Moreover, assume that A

has a polynomial runtime in N .

To motivate this class of algorithms we show that machine learning algorithms, such as support
vector machines or linear regression, that perform (regularized) empirical risk minimization with
respect to a convex loss function belong to this class. In empirical risk minimization, an algorithm
A aims to find an element of a hypothesis class W ⊆ Rd that minimizes the risk functional, i.e.,
the expected loss, f(w) =

∫
l(w, x, y)dP (x, y) for a convex loss function l : W × X × Y → R+.

Here, X denotes the input space and Y the target space, distributed according to an underlying
data distribution Q : X × Y → [0, 1]. Since f(w) is not directly observable, the algorithm solves
minw∈W

1
n

∑
(x,y)∈E l(w, x, y) for a setE ofN training examples drawn iid according toQ (imply-

ing a distribution DN over its solutions). If the hypothesis classW has finite Vapnik-Chervonenkis
dimension [13] or finite Rademacher complexity [2], then this approach is consistent [14] and we
can express the sample size asN(∆) =

(
αε + βε log2

1
∆

)k 1. For regularization this holds if the reg-
ularizer is down-weighted by a factor that decreases for increasing N [14]. The runtime is typically
polynomial, e.g., T (N) ∈ O(N3) for support vector machines.

We now analyze the speedup Radon parallelization achieves. For that, we derive the runtime of R
under the above assumptions.
Proposition 3. Given a randomized convex optimization algorithms A that achieves a confidence
of 1 −∆ when run with parameter NA(∆) = (αε + βε log2

1/∆)
k. Then, Radon parallelization R

applied to A on c processors achieves the same confidence 1−∆ when run with parameter

NR(∆, c) =

(
αεc

1
k + βεc

1
k

(
c−

1
log2 r log2

1

∆
+ log2 r

))k
.

Proof. Recall that R achieves ∆ = (rδ)2h , thus δ = r−1∆2−h . To achieve δ at each processor, we
have to set n = NA(δ), i.e.,

n =

(
αε + βε

(
1

2logr c
log2

1

∆
+ log2 r

))k
.

1For finite Vapnik-Chervonenkis dimension the constants are αε = 4 ln 21/ε2, βε = 4/ε2 log2 e and k = 2.
For finite Rademacher Complexity they are αε = 4 ln 21/ε2, βε = 4/ε2 log2 e and k = 2.

3

Since NR = cn, we get that NR(∆, c) = c (αε + βε (1/(2logr c) log2(1/∆) + log2 r))
k and from

1/(2logr c) = c
− 1/log2 r follows the result.

The speedup of R is its runtime TR(NR(∆), c) using c processor required to achieve a given
(ε,∆)-guarantee in contrast to the corresponding runtime TA(NA(∆)) of A on one processor,
i.e., σh = TA(NA(∆))/TR(NR(∆), c). For convenience, we abbreviate T (N(∆)) as T (∆). Inserting
TR(∆, c) = TA(δ) + (logr c)r

3 with δ = r−1∆2−h yields

σh(∆) =
TA(∆)

TA
(
r−1∆1/2logr c

)
+ (logr c)r

3
. (2)

Since the runtime of A is polynomial in N , we can express it w.l.o.g. by
TA(∆) = (γε + ρε log2

1/∆)
κ for some constants γε, ρε ∈ R+ and κ ≥ 1. For algorithms

with this runtime we get the following result for the speedup.
Proposition 4. For a consistent randomized convex optimization algorithm A with runtime
TA(∆) = (γε + ρε log2

1/∆)
κ with γε > 0, κ ≥ 1 and ρε ≥ 1/log2 r, the speedup through paral-

lelization withR on c processors is

σh(∆) ≥
(

1

2logr c
(γε + 1) +

1

log2
1
∆

(
(γε + 1) log2 r +

r3 logr c

ρε

))−κ
.

Proof. Using δ = r−1∆
1

2logr c in TR(∆, c) = TA(δ) + (logr c)r
3 and inserting this in Eq. 2 with

TA(∆) = (γε + ρε log2
1/∆)

κ ≥ (ρε log2
1/∆)

κ yields

σh(∆) ≥ (ρε log2
1/∆)

κ(
γε + ρε

(
1

2logr c
log2

1
∆ + log2 r

))κ
+ r3logr c

Since ρε ≥ 1/log2 r it holds that ρε
(

1
2logr c

log2
1
∆ + log2 r

)
> 1. Since for real numbers y, a, k ∈

R+ with y ≥ 1 it holds that (y + a)k ≤ yk(a+ 1)k, we get

σh(∆) ≥︸︷︷︸
logr c,r,κ≥1

(
1

2logr c
(γε + 1) +

1

log2
1
∆

(
(γε + 1) log2 r +

r3logr c

ρε

))−κ

Using this result we determine the asymptotic speedup for ∆→ 0.
Corollary 5. For A as in Prop. 4, the asymptotic speedup is in Θ

(
c
κ/log2(d)

)
, i.e., for ∆ → 0 it

holds that lim∆→0 σh(∆) = c
κ/log2 r(γε + 1)−κ.

Proof. Using Prop. 4 and observing that for ∆→ 0 the factor 1
log2

1
∆

→ 0, we get that

lim
∆→0

σh(∆) =

(
1

2logr c
(γε + 1)

)−κ
=

(
2logr c

γε + 1

)κ
=︸︷︷︸

2logr c=c1/log2 r

(
c

1/log2 r

γε + 1

)κ
∈ Θ

(
c
κ/log2 r

)

Since r = d + 2 and for polynomial time algorithms κ ≥ 1, the speedup of Θ
(
c
κ/log2(r)

)
is larger

than Θ
(
c

1/log2(d)
)
.

4 Conclusion

The proposed scheme is - to the best of our knowledge - the first to provide solid error guarantees
for parallel optimization of unobservable functions, which is not provided for, e.g., the widely used
averaging of solutions. Since Radon parallelization achieves a substantial speed up for a large num-
ber of processors, our approach targets massively distributed systems, like clouds or applications
on mobile phones, sensors or other ubiquitous intelligent systems. For future work it is interest-
ing to apply the scheme to large-scale streaming scenarios, where models are learned online and
combined periodically [5], inducing communication costs (which can be reduced by using dynamic
synchronization protocols [6]).

4

References
[1] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge

University Press, 2009.
[2] Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds

and structural results. The Journal of Machine Learning Research, 3:463–482, 2003.
[3] Dimitris Bertsimas and Santosh Vempala. Solving convex programs by random walks. Journal

of the ACM (JACM), 51(4):540–556, 2004.
[4] Kenneth L Clarkson, David Eppstein, Gary L Miller, Carl Sturtivant, and Shang-Hua Teng. Ap-

proximating center points with iterative radon points. International Journal of Computational
Geometry & Applications, 6(03):357–377, 1996.

[5] Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao. Optimal distributed online
prediction using mini-batches. The Journal of Machine Learning Research, 13(1):165–202,
2012.

[6] Michael Kamp, Mario Boley, Daniel Keren, Assaf Schuster, and Izchak Sharfman.
Communication-efficient distributed online prediction by dynamic model synchronization. In
Machine Learning and Knowledge Discovery in Databases, pages 623–639. Springer, 2014.

[7] Mark W Krentel. The complexity of optimization problems. In Proceedings of the eighteenth
annual ACM symposium on Theory of computing, pages 69–76. ACM, 1986.

[8] Olana Missura and Thomas Gärtner. Online optimisation in convexity spaces. In Proceedings
of the Workshop on Discrete and Combinatorial Problems in Machine Learning (DISML) at
NIPS 2014, 2014.

[9] Johann Radon. Mengen konvexer körper, die einen gemeinsamen punkt enthalten. Mathema-
tische Annalen, 83(1):113–115, 1921.

[10] Rocco A Servedio. Perceptron, winnow, and pac learning. SIAM Journal on Computing, 31
(5):1358–1369, 2002.

[11] Shai Shalev-Shwartz, Ohad Shamir, Karthik Sridharan, and Nathan Srebro. Stochastic convex
optimization. In Proceedings of the 22nd Annual Conference on Learning Theory (COLT),
2009.

[12] Ohad Shamir and Nathan Srebro. On distributed stochastic optimization and learning. In Pro-
ceedings of the 52nd Annual Allerton Conference on Communication, Control, and Computing,
2014.

[13] Vladimir Naumovich Vapnik and Alexey Yakovlevich Chervonenkis. On the uniform con-
vergence of relative frequencies of events to their probabilities. Theory of Probability & Its
Applications, 16(2):264–280, 1971.

[14] Ulrike Von Luxburg and Bernhard Schölkopf. Statistical learning theory: Models, concepts,
and results. In Handbook for the History of Logic, volume 10, pages 751–706. Cambridge
University Press, 2009.

[15] Martin Zinkevich, Markus Weimer, Alexander J. Smola, and Lihong Li. Parallelized stochastic
gradient descent. In Advances in Neural Information Processing Systems (NIPS), pages 2595–
2603, 2010.

5

	Introduction
	Consistency and Runtime
	Speedup for Polynomial-Time Algorithms
	Conclusion

