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Abstract

We propose a novel Riemannian preconditioning approach for the tensor com-
pletion problem with rank constraint. A Riemannian metric or inner product is
proposed that exploits the least-squares structure of the cost function and takes
into account the structured symmetry in Tucker decomposition. The specific met-
ric allows to use the versatile framework of Riemannian optimization on quotient
manifolds to develop a preconditioned nonlinear conjugate gradient algorithm for
the problem. Numerical comparisons suggest that our proposed algorithm ro-
bustly outperforms state-of-the-art algorithms across different problem instances
encompassing various synthetic and real-world datasets.

1 Introduction

This paper addresses the problem of low-rank tensor completion when the rank is a priori known
or estimated. Without loss of generality, we focus on 3-order tensors. Given a tensor Xn1×n2×n3 ,
whose entries X ?

i1,i2,i3
are only known for some indices (i1, i2, i3) ∈ Ω, where Ω is a subset of

the complete set of indices {(i1, i2, i3) : id ∈ {1, . . . , nd}, d ∈ {1, 2, 3}}, the fixed-rank tensor
completion problem is formulated as

min
X∈Rn1×n2×n3

1

|Ω| ‖PΩ(X )−PΩ(X ?)‖2F subject to rank(X ) = r, (1)

where the operator PΩ(X )i1i2i3 = Xi1i2i3 if (i1, i2, i3) ∈ Ω and PΩ(X )i1i2i3 = 0 otherwise and
(with a slight abuse of notation) ‖ · ‖F is the Frobenius norm. rank(X ) (= r = (r1, r2, r3)), called
the multilinear rank of X , is the set of the ranks of for each of mode-d unfolding matrices. rd � nd
enforces a low-rank structure. The mode is a matrix obtained by concatenating the mode-d fibers
along column and mode-d unfolding of X is Xd ∈ Rnd×nd+1···nDn1···nd−1 for d = {1, . . . , D}.
The optimization problem (1) has many variants, and one of those is extending the nuclear norm
regularization approach from the matrix case [1] to the tensor case. While this generalization leads
to good results [2, 3, 4], its scalabilityto large-scale instances is not trivial, especially due to the
necessity of high-dimensional singular value decomposition computations. A different approach ex-
ploits Tucker decomposition [5, Section 4] of a low-rank tensor X to develop large-scale algorithms
for (1), e.g., in [6, 7]. The present paper exploits both the symmetry present in Tucker decomposition
and the least-squares structure of the cost function of (1) by using the concept of preconditioning.
While preconditioning in unconstrained optimization is well studied [8, Chapter 5], preconditioning
on constraints with symmetries, owing to non-uniqueness of Tucker decomposition [5, Section 4.3],
is not straightforward. We build upon the recent work [9] that suggests to use Riemannian precondi-
tioning with a tailored metric (inner product) in the Riemannian optimization framework on quotient
manifolds [10, 11, 12]. Our proposed preconditioned nonlinear conjugate gradient algorithm is im-
plemented in the Matlab toolbox Manopt [13] and it outperforms state-of-the-art methods. The
codes are available at http://bamdevmishra.com/codes/tensorcompletion/.
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2 Exploiting the problem structure

We focus on the two fundamental structures present in (1): symmetry in the constraints, and the
least-squares structure of the cost function. Finally, a novel metric is proposed.

The quotient and least-squares structures. The Tucker decomposition of a tensor X ∈
Rn1×n2×n3 of rank r (=(r1, r2, r3)) is [5, Section 4.1] X = G×1U1×2U2×3U3, where Ud ∈
St(rd, nd) for d ∈ {1, 2, 3} belongs to the Stiefel manifold of matrices of size nd × rd with
orthogonal columns and G ∈ Rr1×r2×r3 . Here, W ×d V ∈ Rn1×···nd−1×m×nd+1×···nN com-
putes the d-mode product of a tensor W ∈ Rn1×···×nN and a matrix V ∈ Rm×nd . Tucker de-
composition is not unique as X remains unchanged under the transformation (U1,U2,U3,G) 7→
(U1O1,U2O2,U3O3,G×1OT

1×2OT
2×3OT

3 ) for all Od ∈ O(rd), which is the set of orthogonal
matrices of size of rd × rd. The classical remedy to remove this indeterminacy is to have ad-
ditional structures on G like sparsity or restricted orthogonal rotations [5, Section 4.3]. In con-
trast, we encode the transformation in an abstract search space of equivalence classes, defined as,
[(U1,U2,U3,G)] := {(U1O1,U2O2,U3O3,G×1OT

1×2OT
2×3OT

3 ) : Od ∈ O(rd)}. The set of
equivalence classes is the quotient manifold [14, Theorem 9.16]

M/∼ := M/(O(r1)×O(r2)×O(r3)), (2)

whereM is called the total space (computational space) that is the product spaceM := St(r1, n1)×
St(r2, n2)× St(r3, n3)× Rr1×r2×r3 . Due to the invariance of the Tucker decomposition, the local
minima of (1) inM are not isolated, but they become isolated onM/∼. Consequently, the problem
(1) is an optimization problem on a quotient manifold for which systematic procedures are proposed
in [10, 11, 12] by endowingM/∼with a Riemannian structure. We callM/∼ the Tucker manifold.

Another structure that is present in (1) is the least-squares structure of the cost function. A way to ex-
ploit it is to endow the search space with a metric (inner product) induced by the Hessian of the cost
function [8]. This induced metric (or its approximation) resolves convergence issues of first-order
optimization algorithms. Specifically for the case of quadratic optimization with rank constraint
(matrix case), Mishra and Sepulchre [9, Section 5] propose a family of Riemannian metrics from
the Hessian of the cost function. Since applying this approach directly for (1) is computationally
costly, we consider a simplified cost function by assuming that Ω contains the full set of indices,
i.e., we focus on ‖X − X ?‖2F to propose a metric candidate. A good candidate is by considering
only the block diagonal elements of the Hessian of ‖X −X ?‖2F . It should emphasized that the cost
function ‖X −X ?‖2F is convex and quadratic in X . Consequently, it is also convex and quadratic
in the arguments (U1,U2,U3,G) individually. The block diagonal approximation of the Hessian of
‖X −X ?‖2F in (U1,U2,U3,G) is ((G1GT

1 )⊗ In1
, (G2GT

2 )⊗ In2
, (G3GT

3 )⊗ In3
, Ir1r2r3), where

Gd is the mode-d unfolding of G and is assumed to be full rank. The terms GdGT
d for d ∈ {1, 2, 3}

are positive definite when r1 ≤ r2r3, r2 ≤ r1r3, and r3 ≤ r1r2.

A novel Riemannian metric and its motivation. An element x in the total spaceM has the matrix
representation (U1,U2,U3,G). Consequently, the tangent space TxM is the Cartesian product
of the tangent spaces of the individual manifolds, i.e., TxM has the matrix characterization [12]
TxM = {(ZU1 ,ZU2 ,ZU3 ,ZG) ∈ Rn1×r1×Rn2×r2×Rn3×r3×Rr1×r2×r3 : UTd ZUd

+ZTUd
Ud =

0, for d ∈ {1, 2, 3}}. The earlier discussion on symmetry and least-squares structure leads to the
novel metric gx : TxM× TxM→ R

gx(ξx, ηx) = 〈ξU1
, ηU1

(G1GT
1 )〉+ 〈ξU2

, ηU2
(G2GT

2 )〉+ 〈ξU3
, ηU3

(G3GT
3 )〉+ 〈ξG , ηG〉, (3)

where ξx, ηx ∈ TxM are tangent vectors with matrix characterizations, (ξU1 , ξU2 , ξU3 , ξG) and
(ηU1 , ηU2 , ηU3 , ηG), respectively and 〈·, ·〉 is the Euclidean inner product. As contrasts to the classical
Euclidean metric, the metric (3) scales the level sets of the cost function on the search space that
leads a preconditioning effect on the algorithms developed on the Tucker manifold.

3 Notions of optimization on quotient manifolds

Each point on a quotient manifold represents an entire equivalence class of matrices in the total
space. Abstract geometric objects on a quotient manifold call for matrix representatives in the to-
tal space. Similarly, algorithms are run in the total space M, but under appropriate compatibility
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Figure 1: Riemannian optimization framework.

between the Riemannian structure of M and the Riemannian structure of the quotient manifold
M/∼, they define algorithms on the quotient manifold. Once we endowM/∼ with a Riemannian
structure, the constraint optimization problem (1) is conceptually transformed into an unconstrained
optimization over the Riemannian quotient manifold (2). Figure 1 illustrates a schematic view of
optimization with equivalence classes, where the points x and y inM belong to the same equiva-
lence class (shown in solid blue color) and they represent a single point [x] := {y ∈M : y ∼ x} on
the quotient manifoldM/∼. The abstract tangent space T[x](M/∼) at [x] ∈M/∼ has the matrix
representation in TxM, but restricted to the directions that do not induce a displacement along the
equivalence class [x]. This is realized by decomposing TxM into two complementary subspaces.
The vertical space Vx is the tangent space of the equivalence class [x]. On the other hand, the hori-
zontal spaceHx is the orthogonal subspace to Vx, i.e., TxM = Vx ⊕Hx. The horizontal subspace
provides a valid matrix representation to the abstract tangent space T[x](M/∼) [10, Section 3.5.8].
An abstract tangent vector ξ[x] ∈ T[x](M/∼) at [x] has a unique element ξx ∈ Hx that is called
its horizontal lift. Endowed with the Riemannian metric (3), the quotient manifold M/ ∼ is a
Riemannian submersion ofM. The submersion principle then allows to work out concrete matrix
representations of abstract object onM/∼. Particularly, starting from an arbitrary matrix (with ap-
propriate dimensions), two linear projections are needed: the first projection Ψx is onto the tangent
space TxM, while the second projection Πx is onto the horizontal subspaceHx. Their formulas are
shown in Table 1. The computation cost of these projections is O(n1r

2
1 + n2r

2
2 + n3r

2
3).

Finally, we propose a Riemannian nonlinear conjugate gradient algorithm for (1) that scales well to
large-scale instances. Specifically, we use the conjugate gradient implementation of Manopt with the
ingredients described in Table 1. The convergence analysis of this method follows from [15, 16, 10].
If f(X ) = ‖PΩ(X )−PΩ(X ?)‖2F /|Ω|, then the Riemannian gradient gradxf , which has the matrix
characterization Ψ(egradxf), where egradxf is the Euclidean gradient of f . We also show a way
to compute a step-size guess effectively. The total computational cost per iteration of our proposed
algorithm is O(|Ω|r1r2r3), where |Ω| is the number of known entries.

Table 1: Ingredients to implement an off-the-shelf conjugate gradient algorithm for (1).
Vertical tangent {(U1Ω1,U2Ω2,U3Ω3,−(G×1Ω1 + G×2Ω2 + G×3Ω3)) :

vectors in Vx Ωd ∈ Rrd×rd ,ΩT
d = −Ωd, for d ∈ {1, 2, 3}}

Horizontal tangent {(ζU1
, ζU2

, ζU3
, ζG) ∈ TxM :

vectors inHx (GdGT
d )ζTUd

Ud + ζGd
GT

d is symmetric, for d ∈ {1, 2, 3}}
Ψ(·) projects an ambient (YU1

− U1SU1
(G1GT

1 )−1,YU2
− U2SU2

(G2GT
2 )−1,

vector (YU1
,YU2

,YU3
,YG) YU3

− U3SU3
(G3GT

3 )−1,YG), where SUd
for d ∈ {1, 2, 3} are

onto TxM solutions to SUd
GdGT

d + GdGT
d SUd

= GdGT
d (YT

Ud
Ud + UT

d YUd
)GdGT

d

Π(·) projects a tangent (ξU1
− U1Ω1, ξU2

− U2Ω2, ξU3
− U3Ω3,

vector ξ ontoHx ξG − (−(G×1Ω1 + G×2Ω2 + G×3Ω3))), where Ωd

are solutions to particular coupled Lyapunov equations.
egradxf (S1(U3 ⊗ U2)GT

1 (G1GT
1 )−1, S2(U3 ⊗ U1)GT

2 (G2GT
2 )−1,

S3(U2 ⊗ U1)GT
3 (G3GT

3 )−1,S ×1 UT
1 ×2 UT

2 ×3 UT
3 )×3 UT

3 ),
where S = 2

|Ω| (PΩ(G×1U1×2U2×3U3)−PΩ(X?)).

4 Numerical comparisons

We show numerical comparisons of our proposed algorithm with state-of-the-art algorithms that in-
clude TOpt [6] and geomCG [7], for comparisons with Tucker decomposition based algorithms, and
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HaLRTC [2], Latent [3], and Hard [4] as nuclear norm minimization algorithms. All simulations
are performed in Matlab on a 2.6 GHz Intel Core i7 machine with 16 GB RAM. For specific opera-
tions with unfoldings of S, we use the mex interfaces that are provided in geomCG. For large-scale
instances, our algorithm is only compared with geomCG as other algorithms cannot handle these
instances. We randomly and uniformly select known entries based on a multiple of the dimension,
called the over-sampling (OS) ratio, to create the training set Ω. Algorithms (and problem instances)
are initialized randomly, as in [7], and are stopped when either the mean square error (MSE) on the
training set Ω is below 10−12 or the number of iterations exceeds 250. We also evaluate the mean
square error on a test set Γ, which is different from Ω. Five runs are performed in each scenario.
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Figure 2: Experiments on synthetic datasets.

Case 1 considers synthetic small-scale tensors of size 100 × 100 × 100, 150 × 150 × 150, and
200 × 200 × 200 and rank r = (10, 10, 10) are considered. OS is {10, 20, 30}. Figure 2(a) shows
that the convergence behavior of our proposed algorithm is either competitive or faster than the
others. Next, Case 2 considers large-scale tensors of size 3000×3000×3000, 5000×5000×5000,
and 10000 × 10000 × 10000 and ranks r = (5, 5, 5) and (10, 10, 10). OS is 10. Our proposed
algorithm outperforms geomCG in Figure 2(b). Case 3 considers instances where the dimensions
and ranks along certain modes are different than others. Two cases are considered. Case (3.a)
considers tensors size 20000× 7000× 7000, 30000× 6000× 6000, and 40000× 5000× 5000 with
rank r = (5, 5, 5). Case (3.b) considers a tensor of size 10000×10000×10000 with ranks (7, 6, 6),
(10, 5, 5), and (15, 4, 4). In all the cases, the proposed algorithm converges faster than geomCG as
shown in Figure 2(c). Finally, Case 4 considers MovieLens-10M dataset that contains 10000054
ratings corresponding to 71567 users and 10681 movies. We split the time into 7-days wide bins
results, and finally, get a tensor of size 71567 × 10681 × 731. The fraction of known entries is
less than 0.002%. We perform five random 80/10/10–train/validation/test partitions. The maximum
iteration is set to 500. As shown in Table 2, our proposed algorithm consistently gives lower test
errors than geomCG across different ranks.

Table 2: Case 4: test MSE on Γ and time in seconds.
MovieLens-10M Proposed geomCG

r Time MSE on Γ Time MSE on Γ

(4, 4, 4) 1748± 441 0.6762± 1.5 · 10−3 2981± 40 0.6956± 2.8 · 10−3

(6, 6, 6) 6058± 47 0.6913± 3.3 · 10−3 6554± 655 0.7398± 7.1 · 10−3

(8, 8, 8) 11370± 103 0.7589± 7.1 · 10−3 13853± 118 0.8955± 3.3 · 10−2

(10, 10, 10) 32802± 52 1.0107± 2.7 · 10−2 38145± 36 1.6550± 8.7 · 10−2

5 Conclusion and future work

We have proposed a preconditioned nonlinear conjugate gradient algorithm for the tensor completion
problem by exploiting the fundamental structures of symmetry, due to non-uniqueness of Tucker
decomposition, and least-squares of the cost function. A novel Riemannian metric is proposed that
enables to use the versatile Riemannian optimization framework. Numerical comparisons suggest
that our proposed algorithm has a superior performance on different benchmarks.
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