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Abstract
Iterative procedures for parameter estimation based on stochastic gradient descent
(sgd) allow the estimation to scale to massive data sets. However, in both theory
and practice, they suffer from numerical instability. Moreover, they are statistically
inefficient as estimators of the true parameter value. To address these two issues,
we propose a new iterative procedure termed averaged implicit sgd (ai-sgd). For
statistical efficiency, ai-sgd employs averaging of the iterates, which achieves the
optimal Cramér-Rao bound under strong convexity; i.e., it is an optimal unbiased
estimator of the true parameter value. For numerical stability, ai-sgd employs an
implicit update at each iteration, which is related to proximal operators in opti-
mization. In practice, ai-sgd is more stable than averaging procedures that do not
employ proximal operators, and is simpler to implement than procedures that do
employ proximal operators but require careful tuning of several hyperparameters.

1 Introduction

Many problems in statistical estimation involve finding the parameter value θ? ∈ Θ such that
θ? = arg min

θ∈Θ
E (L(θ, ξ)) , (1)

where the expectation is with respect to the random variable ξ ∈ Ξ ⊆ Rd that represents the data,
Θ ⊆ Rp is the parameter space, and L : Θ × Ξ → R is a loss function. A popular procedure for
solving Eq.(1) is stochastic gradient descent (sgd) [15, 3], where a sequence θn approximates θ?,
and is updated iteratively, one data point at a time, through the iteration

θn = θn−1 − γn∇L(θn−1, ξn), (2)
where {ξ1, ξ2, . . .} is a stream of i.i.d. realizations of ξ, and {γn} is a non-increasing sequence of pos-
itive real numbers, known as the learning rate. While computationally efficient, the sgd procedure
(2) suffers from numerical instability and statistical inefficiency. Regarding stability, sgd is sensitive
to specification of the learning rate γn, since the mean-squared errors can diverge arbitrarily when γn
is misspecified with the respect to problem parameters, e.g., the convexity and Lipschitz parameters
of the loss function [1, 7]. Regarding statistical efficiency, sgd loses statistical information. In fact,
the amount of information loss depends on the misspecification of γn with respect to the spectral
gap of the matrix E

(
∇2L(θ?, ξ)

)
[11, 13], also known as the Fisher information matrix if L is the

negated log-likelihood. Several solutions have been proposed to resolve these two issues, e.g., using
projections and gradient clipping. However, they are usually heuristic and hard to generalize.

In this paper, we aim for the ideal combination of computational efficiency, numerical stability, and
statistical efficiency using the following procedure:

θn = θn−1 − γn∇L(θn, ξn), (3)

θ̄n = (1/n)

n∑
i=1

θi. AI-SGD (4)
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2 Preliminaries

The norm || · || will denote the L2 norm. For two matrices A,B, A � B denotes that B − A is
nonnegative-definite; tr(A) denotes the trace of A.
Assumption 1. The loss function L(θ, ξ) is almost-surely differentiable. The random vector ξ can
be decomposed as ξ = (x, y), x ∈ Rp, y ∈ Rd, such that

L(θ, ξ) = L(xᵀθ, y). (5)
Assumption 2. The learning rate sequence {γn} is γn = γ1n

−γ , where γ1 > 0 and γ ∈ (1/2, 1].
Assumption 3 (Lipschitz conditions). For all θ1, θ2 ∈ Θ, a combination of the following conditions
is satisfied almost-surely:

(a) The loss function L is Lipschitz-continuous with parameter λ0, i.e.,
|L(θ1, ξ)− L(θ2, ξ)| ≤ λ0||θ1 − θ2||,

(b) The map ∇L is Lipschitz-continuous with parameter λ1, i.e.,
||∇L(θ1, ξ)−∇L(θ2, ξ)|| ≤ λ1||θ1 − θ2||,

(c) The map ∇2L is Lipschitz-continuous with parameter λ2, i.e.,
||∇2L(θ1, ξ)−∇2L(θ2, ξ)|| ≤ λ2||θ1 − θ2||.

Assumption 4. The observed Fisher information matrix, Î(θ) , ∇2L(θ, ξ), has non-vanishing
trace, i.e., there exists φ > 0 such that tr(Î(θ)) ≥ φ, almost-surely, for all θ ∈ Θ. The expected
Fisher information matrix, I(θ) , E

(
Î(θ)

)
, has minimum eigenvalue 0 < λf ≤ φ, for all θ ∈ Θ.

Assumption 5. The zero-mean random variableWθ , ∇L(θ, ξ)−∇`(θ) is square-integrable, such
that, for a fixed positive-definite Σ,

E
(
Wθ?W

ᵀ
θ?

)
� Σ.

Remarks. Assumption 1 is not very restrictive because the majority of machine learning models
depends on parameter θ through a linear combination with features. A notable exception includes
loss functions with a regularization term. Although it is easy to add regularization to ai-sgd we
will not do so in this paper because ai-sgd works well without it, since ai-sgd already regularizes
the estimate θn towards θn−1; in experiments, regularization neither improved nor worsened ai-
sgd. Assumptions on Lipschitz gradients (Assumption 3(b), Assumption 3(c)) can are common
[1, 7]. Assumption 3(a) is less standard in classic sgd literature but, so-far, it is standard in the
limited literature on implicit sgd [2]. However, we can forgo this assumption and still maintain
identical rates for the errors, although at the expense of a more complicated analysis. It is also an
open problem whether a nice stability result similar to Theorem 1 can be derived under Assumption
3(b) instead of Assumption 3(a). Assumption 4 makes two claims. The first claim on the observed
Fisher information matrix is a relaxed form of strong convexity for the loss L(θ, ξ). However, in
contrast to strong convexity, this claim allows several eigenvalues of ∇2L to be zero. The second
claim of Assumption 4 is equivalent to strong convexity of the expected loss `(θ). From a statistical
perspective, strong convexity posits that there is information in the data for all elements of θ?. This
assumption is necessary to derive bounds on the errors E

(
||θn − θ?||2

)
, and has been used to show

optimality of classic sgd with averaging [9, 6, 14, 7].

Overall, our assumptions are weaker than the assumptions in the limited literature on implicit sgd.
For example, Bertsekas [2, Assumptions 3.1, 3.2] assumes almost-sure bounded gradients∇L(θ, ξ)
in addition to Assumption 3(a).

3 Theory

The main technical challenge in analyzing implicit sgd (3) is that, unlike typical analysis with classic
sgd (2), the error ξn is not conditionally independent of θn. This implies that E (∇L(θn, ξn)| θn) 6=
`(θn), which makes it no longer possible to use the convexity properties of ` to analyze the errors
E
(
||θn − θ?||2

)
, as it is common in the literature. The proof strategy relies on a master lemma for

the analysis of recursions that appear to be typical in implicit procedures, which is novel to our best
knowledge. All proofs are given in an extended version of this paper [12].
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3.1 Computational efficiency

Our first result enables efficient computation of the implicit update (3). In general, this can be ex-
pensive due to solving a fixed-point equation in many dimensions, at every iteration. We reduce this
multi-dimensional equation to an equation of only one dimension. Furthermore, under almost-sure
convexity of the loss function, efficient search bounds for the one-dimensional fixed-point equation
are available. This result generalizes an earlier result in efficient computation of implicit updates on
generalized linear models [11, Algorithm 1].
Lemma 1. Suppose that Assumption 1 holds. For a fixed data point ξ = (x, y), let L′(θ, ξ) =
∂L(θ,ξ)
∂(xᵀθ)

def
= ∂L(xᵀθ,y)

∂(xᵀθ) and L′′(θ, ξ) = ∂L′(θ,ξ)
∂(xᵀθ) . Then, almost-surely,

∇L(θn, ξn) = sn∇L(θn−1, ξn); (6)

the scalar sn satisfies the fixed-point equation,

snκn−1 = L′ (θn−1 − snγnκn−1xn, ξn) , (7)

where κn−1 , L′(θn−1, ξn). Moreover, if L′′(θ, ξ) ≥ 0 almost-surely for all θ ∈ Θ, then

sn ∈
{

[κn−1, 0) if κn−1 < 0,

[0, κn−1] otherwise.

Remarks. Lemma 1 has two parts. First, it shows that the implicit update can be performed by
obtaining sn from the fixed-point Eq.(6), and then using ∇L(θn, ξn) = sn∇L(θn−1, ξn) in the im-
plicit update (3). The fixed-point equation can be solved through a numerical root-finding procedure
[4, 5, 11]. Second, when the loss function is convex, then narrow search bounds for sn are avail-
able. This property holds, for example, when the loss function is the negative log-likelihood in the
exponential family of models.

3.2 Non-asymptotic analysis

Theorem 1. Suppose that Assumptions 1, 2, 3(a), and 4 hold. Define δn , E
(
||θn − θ?||2

)
, and

constants Γ2 = 4λ2
0

∑
γ2
i < ∞, ε = (1 + γ1(φ − λf ))−1, and λ = 1 + γ1λf ε. Then, there exists

constant n0 > 0 such that, for all n > 0,

δn ≤(8λ2
0γ1λ/λf ε)n

−γ + e− log λ·n1−γ
[δ0 + λn0Γ2].

Remarks. According to Theorem 1, the convergence rate of the implicit iterates θn isO(n−γ). This
matches earlier results on rates of classic sgd [1, 7]. The most important difference, however, is
that the implicit procedure discounts the initial conditions δ0 at an exponential rate, regardless of
the specification of the learning rate. As shown by Moulines and Bach [7, Theorem 1], in classic
sgd there exists a term exp(λ2

1γ
2
1n

1−2γ) in front of the initial conditions, which can be catastrophic
if the learning rate parameter γ1 is misspecified. In contrast, the implicit iterates are uncondition-
ally stable, i.e., any specification of the learning rate will lead to a stable discounting of the initial
conditions.
Theorem 2. Consider the ai-sgd procedure (4), and suppose that Assumptions 2, 3(a), 3(c), 4, and
5 hold, and λ is defined as in Theorem 1. Then,

(E
(
||θ̄n − θ?||2

)
)1/2 ≤ 1√

n

(
tr(∇2`(θ?)

−1Σ∇2`(θ?)
−1)
)1/2

+O(n−1+γ/2) +O(n−γ)

+O(exp(− log λ · n1−γ/2).

Remarks. The full version of Theorem 2, which includes all constants, is in the extended paper [12].
Even in its shortened form, Theorem 2 delivers three main results. First, the iterates θ̄n attain the
Cramér-Rao lower bound, i.e., any other unbiased estimator of θ? cannot have lower MSE than θ̄n.
From an optimization perspective, θ̄n attains the rate O(1/n), which is optimal for first-order meth-
ods [8]. This result matches the asymptotic optimality of averaged iterates from classic sgd proce-
dures, which has been proven by Polyak and Juditsky [9]. Second, the remaining rates areO(n−2+γ)
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and O(n−2γ). This implies the optimal choice γ = 2/3 for the exponent of the learning rate. It ex-
tends the results of Ruppert [10], and more recently by Xu [14], and Moulines and Bach [7], on
optimal exponents for classic sgd procedures. Third, as with non-averaged implicit iterates in The-
orem 1, the averaged iterates θ̄n have a decay of the initial conditions regardless of the specification
of the learning rate parameter. This stability property is inherited from the underlying implicit sgd
procedure (3) that is being averaged. In contrast, averaged iterates of classic sgd procedures can
have large terms amplifying arbitrarily the initial conditions [7, Theorem 3].
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