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Abstract

In this paper, we show that simple Stochastic subGradient Decent methods with
multiple Restarting, named RSGD, can achieve a linear convergence rate for a
class of non-smooth and non-strongly convex optimization problems where the
epigraph of the objective function is a polyhedron, to which we refer as polyhe-
dral convex optimization. Its applications in machine learning include `1 con-
strained or regularized piecewise linear loss minimization and submodular func-
tion minimization. To the best of our knowledge, this is the first result on the
linear convergence rate of stochastic subgradient methods for non-smooth and
non-strongly convex optimization problems.

1 Introduction

The subgradient descent algorithm and its stochastic version are classical first-order methods for
optimizing non-smooth problems. When the objective function is non-strongly convex, their con-
vergence rate isO(1/

√
T ) with the T being the number of iterations. And it has been shown that this

sublinear convergence rate is unimprovable for general non-smooth problems [6]. In this paper, we
present linearly convergent stochastic subgradient methods as simple as standard stochastic subgra-
dient descent methods for a class of non-smooth and non-strongly convex problems whose epigraph
is a polyhedron. It can find applications in `1 or `∞ regularized/constrained piecewise linear loss
(e.g., hinge loss, absolute loss) minimization [2] and submodular function minimization [1].

In the present paper, we show that for a family of non-smooth and non-strongly convex optimization
problems, a simple restarting scheme can make stochastic subgradient descent (SGD) method con-
verge linearly, given that the epigraph of the objective function is a polyhedron. This technique is
based on the fact that, for such a problem, the distance of a solution to the optimal set can be bounded
by a multiple of the difference between the objective value of this solution and the optimal objective
value, as illustrated by Figure 1. We refer to this fact as polyhedral error bound condition and to
the family of non-smooth and non-strongly convex optimization of interest as polyhedral convex
optimization. Our work is motivated by [3] which established a version of the polyhedral error
bound condition when the domain of the problem is a polytope and associated it with the Nesterov’s
smoothing method for solving the Nash equilibrium of a two-person zero-sum game. Their algo-
rithm achieves a linear convergence rate. Compared to their method, the polyhedral error bound
condition we consider here allows the domain to be a unbounded polyhedron, and thus, more gen-
eral. We show that the stochastic subgradient methods can also benefit from this condition to obtain
a linear convergence rate.

∗A longer version of this extended abstract is available on arxiv at http://arxiv.org/abs/1510.
01444.
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2 Stochastic subGradient methods with Linear Convergence Rate

In this section, we describe the techniques that make stochastic subgradient descent methods con-
verge linearly for a family of non-smooth and non-strongly convex problems. We consider the
following optimization problem:

min
w∈Ω

f(w) (1)

where f(w) is a non-smooth and non-strongly convex function and Ω is a closed convex set in Rd.
We denote by ∂f(w) a subgradient of f(w) and by ∂f(w; ξ) a stochastic subgradient of f(w) that
depends on a random variable ξ such that Eξ[∂f(w; ξ)] = ∂f(w). Throughout the paper, we make
the following assumptions unless stated otherwise.
Assumption 1. For a convex minimization problem (1), we assume

a. There exist known w0 ∈ Ω and ε0 ≥ 0 such that f(w0)−minw∈Ω f(w) ≤ ε0.

b. There exists a known constant G such that ‖∂f(w)‖2 ≤ G or ‖∂f(w; ξ)‖2 ≤ G almost
surely.

c. The epigraph of f over Ω is a polyhedron.

We refer to the convex problem (1) that satisfies the Assumption 1.c as polyhedral convex opti-
mization. We can show that many non-smooth and non-strongly convex machine learning problems
satisfy the above assumptions, including

• `1 constrained/regularized hinge loss minimization, i.e.,

min
w∈Rd

1

n

n∑
i=1

max(0, 1− yiw>xi) +R(w)

where R(w) is

R(w) =

{
0 if ‖w‖1 ≤ B

∞ otherwise
, or R(w) = λ‖w‖1

for the constrained problems or for the regularized problems, respectively.

Another example is submodular function minimization [1] .

In the sequel, we denote by ‖ · ‖ a general vector norm and by ‖ · ‖2 the Euclidean norm . Let ∆
and R+ denote a simplex and a positive cone of an appropriate dimension, respectively. Since the
objective function is not strongly convex, the optimal solutions may not be unique. Thus, we use Ω∗
to denote the optimal solution set and use f∗ to denote the unique optimal objective value. Let w+

denote the closest optimal solution in Ω∗ to w measured in terms of norm ‖ · ‖, i.e.,

w+ = min
u∈Ω∗

‖w − u‖.

The following lemma is the key to our analysis that is a result of the Assumption 1.c.
Lemma 1 (Polyhedral Error Bound Condition). Suppose Assumption 1.c is satisfied, then there
exists κ > 0 that depends on the definition of ‖ · ‖ such that

‖w −w+‖ ≤ f(w)− f∗
κ

,∀w ∈ Ω

Remark: Lemma 1 above generalizes the Lemma 4 in [3], which requires the feasible set to be
a polytope (i.e., a bounded polyhedron), to a similar result where the feasible set can be a (un-
bounded) polyhedron. This generalization is essential because it allows the development of efficient
algorithms for many unconstrained machine learning problems without artificially including a con-
straint. Different from [3] that used their Lemma 4 to develop a linearly convergent algorithm for
solving the Nash equilibrium of a two-person zero-sum games based on Nesterov’s smoothing tech-
nique [7], we show in this paper that Lemma 1 provides the basis for a stochastic gradient method
with linear convergence for the polyhedral convex minimization problems. A graphical illustration
of Lemma 1 for an one dimensional problem is shown in Figure 1.
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Figure 1: An illustration of Lemma 1 for a non-smooth and non-stronlgy convex problem. The
value of κ = f(w)−f∗

|w−w+| is just the slope of the linear line, where w+ (blue point) is the closest optimal
solution to w (red point).

Algorithm 1 SGD: ŵT = SGD(w1, η, T )

1: Input: a step size η, the number iterations T , and the initial solution w1,
2: for t = 1, . . . , T do
3: compute a subgradient or stochastic subgradient of f(w) at wt denoted by gt
4: update wt+1 = ΠΩ[wt − ηgt]
5: end for
6: Output: ŵT =

∑T
t=1

wt

T

2.1 Restarted Stochastic subGradient Descent (RSGD) Method

In the sequel, we present all results using Euclidean norm to define w+ and the parameter κ.
We first describe the vanilla stochastic subgradient descent method in Algorithm 1 that will serve as
a subroutine in the proposed algorithm, where we make it an option to use either a subgradient or a
stochastic subgradient and abuse the name SGD to denote both subgradient descent and stochastic
subgradient descent methods. The step 4 in Algorithm 1 is a projection onto Ω defined as

ΠΩ[w] = arg min
u∈Ω

1

2
‖u−w‖22

The following lemma [9] provides guarantee on the convergence of SGD methods. For the sake of
completeness, we provide its proof in the Appendix.
Lemma 2. Let SGD run T iterations. Then we have

f(ŵT )− f∗ ≤
G2η

2
+
‖w1 −w+

1 ‖22
2ηT

for using subgradients, and

E [f(ŵT )− f∗] ≤
G2η

2
+

E[‖w1 −w+
1 ‖22]

2ηT
.

for using stochastic subgradients.

Now, we are ready to present the proposed RSGD method. The key steps are presented in Algo-
rithm 2. The algorithm uses SGD as a subroutine in multiple epochs. In each epoch, it runs SGD
for a fixed number of iterations t and restarts SGD using the averaged solution in the previous epoch
as the starting point. The algorithm geometrically decreases the step size ηk between epochs. The
returned solution wK is the averaged solution of updates in the K-th epoch. We would like com-
pare the proposed RSGD method with two other stochastic optimization algorithms that also run
in epochs, namely Epoch-SGD for strongly convex optimization [4] and SVRG for smooth and
strongly convex optimization [5]. Different from Epoch-SGD that needs to increase the number of
iterations per-epoch geometrically, RSGD uses a constant number of iterations per epoch similarly

3



Algorithm 2 RSGD
1: Input: the number of epochs K and the number iterations t per-epoch,
2: Initialization: w0 ∈ Ω and ε0 as in Assumption 1.a
3: for k = 1, . . . ,K do
4: Set ηk = εk−1/(2G

2)
5: Run SGD to obtain wk = SGD(wk−1, ηk, t)
6: Set εk = εk−1/2
7: end for
8: Output: wK

as in SVRG. Different from SVRG that uses the constant step size due to the smoothness, RSGD
requires a decreasing step size due to non-smoothness similarly as in Epoch-SGD.

The main theorem regarding the convergence of the proposed RSGD is presented below. The con-
vergence result without expectation is for using subgradients to update the solution and that with
expectation is for using stochastic subgradients, where the expectation is take over the randomness
over the stochastic subgradients.
Theorem 1. Suppose the Assumption 1 is satisfied. Let Algorithm 2 run with a sufficiently large
number of iterations per-epoch t such that t ≥ 4G2

κ2 . Then, depending on using either subgradients
or stochastic subgradients, we have

f(wK)− f∗ ≤
ε0
2K

, or E[f(wK)− f∗] ≤
ε0
2K

,

In particular, if K = dlog2( ε0ε )e, we have

f(wK)− f∗ ≤ ε, or E[f(wK)− f∗] ≤ ε,
and the total number of iterations is T = tdlog2( ε0ε )e.

Remark: Since the number of iterations per-epoch t is a constant independent of ε, the overall
iteration complexity is O(log(1/ε)).

Proof. We prove the result for using the subgradients and the proof for stochastic subgradients is
a straightforward extension. We prove the theorem by induction. The result holds obviously for
k = 0. Assuming f(wk−1) − f∗ ≤ εk−1, we only need to show that f(wk) − f∗ ≤ εk. We first
apply Lemma 2 to each epoch of Algorithm 2 and get

f(wk)− f∗ ≤
G2ηk

2
+
‖wk−1 −w+

k−1‖22
2ηkt

By Lemma 1, we have

‖wk−1 −w+
k−1‖2 ≤

1

κ
(f(wk−1)− f∗) ≤

εk−1

κ

Choosing ηk =
εk−1

2G2
and t ≥ 4G2

κ2
, we have

f(wk)− f∗ ≤
εk−1

4
+

ε2k−1

4εk−1
≤ εk−1

2
= εk.

As a result of induction, we have

f(wK)− f∗ ≤
ε0
2K

.

for any K ≥ 0.

3 Conclusions

In this paper, we have proposed a restarted stochastic subgradient descent method that restarts SGD
updates after a fixed number of iterations with the averaged solution obtained from previous epoch
as the starting point and with a geometrically decreasing step size. We prove that the proposed
method achieves a linear convergence for a family of non-smooth and non-strongly convex problems
including many examples from machine learning.
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