
Mixed Robust/Average Submodular Partitioning

Kai Wei1 Rishabh Iyer1 Shengjie Wang2 Wenruo Bai1 Jeff Bilmes1

1 Department of Electrical Engineering, University of Washington
2 Department of Computer Science, University of Washington

{kaiwei, rkiyer, wangsj, wrbai, bilmes}@u.washington.edu

Abstract

We investigate two novel mixed robust/average-case submodular data partitioning
problems that we collectively call Submodular Partitioning. These problems gen-
eralize purely robust instances of the problem, namely max-min submodular fair
allocation (SFA) [8] and min-max submodular load balancing (SLB) [15], and also
average-case instances, that is the submodular welfare problem (SWP) [16] and sub-
modular multiway partition (SMP) [2]. While the robust versions have been studied
in the theory community [7, 8, 11, 15, 16], existing work has focused on tight ap-
proximation guarantees, and the resultant algorithms are not generally scalable to
large real-world applications. This is in contrast to the average case, where most of
the algorithms are scalable. In the present paper, we bridge this gap, by proposing
several new algorithms (including greedy and relaxation algorithms) that not only
scale to large datasets but that also achieve theoretical approximation guarantees
comparable to the state-of-the-art. We moreover provide new scalable algorithms
that apply to additive combinations of the robust and average-case objectives.

1 Introduction
This paper studies two new mixed robust/average-case partitioning problems of the following form:

Problem 1: max
π∈Π

[
λ̄min

i
fi(A

π
i ) +

λ

m

m∑
j=1

fj(A
π
j )
]
, Problem 2: min

π∈Π

[
λ̄max

i
fi(A

π
i ) +

λ

m

m∑
j=1

fj(A
π
j )
]
,

where 0 ≤ λ ≤ 1, λ̄ , 1 − λ, the set of sets π = (Aπ1 , A
π
2 , · · · , Aπm) is a partition of a finite

set V (i.e, ∪iAπi = V and ∀i 6= j, Aπi ∩ Aπj = ∅), and Π refers to the set of all partitions of
V into m blocks. The parameter λ controls the objective: λ = 1 is the average case, λ = 0 is
the robust case, and 0 < λ < 1 is a mixed case. In general, Problems 1 and 2 are hopelessly
intractable, even to approximate, but we assume that the f1, f2, · · · , fm are all monotone non-
decreasing (i.e., fi(S) ≤ fi(T ) whenever S ⊆ T ), normalized (fi(∅) = 0), and submodular [6] (i.e.,
∀S, T ⊆ V , fi(S) + fi(T ) ≥ fi(S ∪ T ) + fi(S ∩ T )). These assumptions allow us to develop fast,
simple, and scalable algorithms that have approximation guarantees, as is done in this paper. These
assumptions, moreover, allow us to retain the naturalness and applicability of Problems 1 and 2 to
a wide variety of practical problems. Submodularity is a natural property in many real-world ML
applications [13, 10, 12, 17]. When minimizing, submodularity naturally model notions of interacting
costs and complexity, while when maximizing it readily models notions of diversity, summarization
quality, and information. Hence, Problem 1 asks for a partition whose blocks each (and that
collectively) are a good, say, summary of the whole. Problem 2 on the other hand, asks for a partition
whose blocks each (and that collectively) are internally homogeneous (as is typical in clustering).
Taken together, we call Problems 1 and 2 Submodular Partitioning. We further categorize these
problems depending on if the fi’s are identical to each other (homogeneous) or not (heterogeneous).1

1Similar sub-categorizations have been called the “uniform” vs. the “non-uniform” case in the past [15, 7].
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Problem 1 (Max-(Min+Avg)) Problem 2 (Min-(Max+Avg))
Approximation factor Approximation factor

λ = 0, MATCHING [8] 1/(n−m + 1) λ = 0, SAMPLING [15] O(
√
n logn)

λ = 0, ELLIPSOID [7] O(
√
nm1/4 logn log3/2m) λ = 0, ELLIPSOID [7] O(

√
n logn)

λ = 0, BINSRCH [11] 1/(2m− 1) λ = 1, GREEDSPLIT† [18, 14] 2
λ = 1, GREEDWELFARE [5] 1/2 λ = 1, RELAX [2] O(logn)
λ = 0, GREEDSAT∗ (1/2− δ, δ

1/2+δ
) LOVÁSZ ROUND∗ m

0 ≤ λ ≤ 1, GENERALGREEDSAT∗ λ/2 0 ≤ λ ≤ 1 GENERALLOVÁSZ ROUND∗ m
λ = 0, Hardness 1/2 [8] λ = 0, Hardness∗ m
λ = 1, Hardness 1− 1/e [16] λ = 1, Hardness 2− 2/m [4]

Table 1: Summary of our contributions and existing work on Problems 1 and 2.2 See text for details.

Previous Work: Special cases of Problems 1 and 2 have appeared previously. Problem 1 with λ = 0
is called submodular fair allocation (SFA), and Problem 2 with λ = 0 is called submodular load
balancing (SLB), robust optimization problems both of which previously have been studied. For SLB
even in the homogeneous setting, [15] show that the problem is information theoretically hard to
approximate within o(

√
n/ log n). They give a sampling-based algorithm achieving O(

√
n/ log n)

for the homogeneous setting. However, the sampling-based algorithm is not practical and scalable
since it involves solving, in the worst-case, O(n3 log n) instances of submodular function minimiza-
tion. Another approach approximates each submodular function by its ellipsoid approximation (again
non-scalable) and reduces SLB to its modular version (minimum makespan scheduling) leading to an
approximation factor of O(

√
n log n) [7]. SFA, on the other hand, has been studied mostly in the

heterogeneous setting. When fi’s are all modular, the tightest algorithm, so far, is to iteratively round
an LP solution achieving O(1/(

√
m log3m)) approximation [1], whereas the problem is NP-hard to

1/2 + ε approximate for any ε > 0 [8]. When fi’s are submodular, [8] gives a matching-based algo-
rithm with a factor 1/(n−m+ 1) approximation that performs poorly when m� n. [11] proposes
a binary search algorithm yielding an improved factor of 1/(2m− 1). Similar to SLB, [7] applies the
same ellipsoid approximation techniques leading to a factor of O(

√
nm1/4 log n log3/2m). These

approaches are theoretically interesting, but they do not scale to large problems. Problems 1 and 2,
when λ = 1, have also been previously studied. Problem 2 becomes the submodular multiway
partition (SMP) for which one can obtain a relaxation based 2-approximation [2] in the homogeneous
case. In the heterogeneous case, the guarantee is O(log n) [3]. Similarly, [18, 14] propose a greedy
splitting 2-approximation algorithm for the homogeneous setting. Problem 1 becomes the submodular
welfare [16] for which a scalable greedy algorithm achieves a 1/2 approximation [5]. Unlike the
worst case (λ = 0), many of the algorithms proposed for these problems are scalable. The general
case (0 < λ < 1) of Problems 1 and 2 differs from either of these extreme cases since we wish both
for a robust and average case partitioning, and controlling λ allows one to trade off between the two.

Our contributions: In contrast to Problems 1 and 2 in the average case (i.e., λ = 1), existing
algorithms for the worst case (λ = 0) are not scalable. This paper closes this gap, by proposing
new classes of algorithmic frameworks to solve SFA and SLB: (1) greedy algorithms; and (2) a
Lovász extension based relaxation algorithm. For SFA under the heterogeneous setting, we propose
a “saturate” greedy algorithm (GREEDSAT) that iteratively solves instances of submodular welfare
problems. We show GREEDSAT has a bi-criterion guarantee of (1/2 − δ, δ/(1/2 + δ)), which
ensures at least dm(1/2− δ)e blocks receive utility at least δ/(1/2 + δ)OPT for any 0 < δ < 1/2.
For SLB, we first generalize the hardness result in [15] and show that it is hard to approximate
better than m for any m = o(

√
n/ log n) even in the homogeneous setting. We then give a

Lovász extension based relaxation algorithm (LOVÁSZ ROUND) yielding a tight factor of m for
the heterogeneous setting. As far as we know, this is the first algorithm achieving a factor of m
for SLB in this setting. Next we show algorithms that handle generalizations of SFA and SLB to
Problems 1 and 2. In particular we generalize GREEDSAT leading to GENERALGREEDSAT to solve
Problem 1. GENERALGREEDSAT provides a guarantee that smoothly interpolates in terms of λ
between the bi-criterion factor by GREEDSAT in the case of λ = 0 and the constant factor of 1/2 by
the greedy algorithm in the case of λ = 1. For Problem 2 we introduce GENERALLOVÁSZ ROUND
that generalizes LOVÁSZ ROUND and obtain an m-approximation for general λ. The theoretical
contributions and the existing work for Problems 1 and 2 are summarized in Table 1.

2 Robust Submodular Partitioning (Problems 1 and 2 when λ = 0)

Notation: we define f(j|S) , f(S ∪ j)− f(S) as the gain of j ∈ V in the context of S ⊆ V . We
assume w.l.o.g. that the ground set is V = {1, 2, · · · , n}.

2Results obtained in this paper are marked as ∗. Methods for only the homogeneous setting are marked as †.
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GREEDSAT for SFA: We give a “greedy” style algorithm – “Saturate” Greedy to solve SFA
(GREEDSAT, see Alg. 1). Similar in flavor to the one proposed in [12] GREEDSAT defines
an intermediate objective F̄ c(π) =

∑m
i=1 f

c
i (Aπi ), where f ci (A) = 1

m min{fi(A), c} (Line 2).
The parameter c controls the saturation in each block. f ci satisfies submodularity for each i.

Algorithm 1: GREEDSAT

1: Input: {fi}mi=1, m, V , α.
2: Let F̄ c(π) = 1

m

∑m
i=1 min{fi(Aπi ), c}.

3: Let cmin = 0, cmax = mini fi(V )
4: while cmax − cmin ≥ ε do
5: c = 1

2
(cmax + cmin)

6: π̂c ∈ argmaxπ∈Π F̄
c(π)

7: if F̄ c(π̂c) < αc then
8: cmax = c
9: else

10: cmin = c; π̂ ← π̂c

11: end if
12: end while
13: Output: π̂.

Unlike SFA, the combinatorial optimization problem
maxπ∈Π F̄

c(π) (Line 6) is much easier and is an in-
stance of the submodular welfare problem (SWP) [16].
In this work, we solve Line 6 by the efficient greedy al-
gorithm as described in [5] with a factor 1/2. It should
be clear that one can also implement a computationally
expensive multi-linear relaxation algorithm as given
in [16] to solve it with a tight factor (1− 1/e). Setting
the input argument α = 1/2 as the approximation fac-
tor for Line 6, the essential idea of GREEDSAT is to
perform a binary search over the parameter c to find the
largest c∗ such that the returned solution π̂c

∗
for the in-

stance of SWP satisfies F̄ c
∗
(π̂c
∗
) ≥ αc∗. GREEDSAT

terminates in solving O(log(mini fi(V )
ε )) instances of

SWP. Theorem 2.1 gives a bi-criterion optimality guarantee.
Theorem 2.1. Given ε > 0, 0 ≤ α ≤ 1 and any 0 < δ < α, GREEDSAT finds a partition such that
at least dm(α− δ)e blocks receive utility at least δ

1−α+δ (maxπ∈Π mini fi(A
π
i )− ε).

For any 0 < δ < α Theorem 2.1 ensures that the top valued dm(α − δ)e blocks in the partition
returned by GREEDSAT are (δ/(1−α+ δ)− ε)-optimal. δ controls the trade-off between the number
of top valued blocks to bound and the performance guarantee attained for these blocks. The smaller
δ is, the more top blocks are bounded, but with a weaker guarantee. We set the input argument
α = 1/2 as the worst-case performance guarantee for solving SWP so that the above theoretical
analysis follows. However, the worst-case factor is often achieved by very contrived examples of
submodular functions. For the ones used in practice, the greedy algorithm often leads to near-optimal
solution [12]. Setting α as the actual performance guarantee for SWP (often very close to 1), the
bound can be significantly improved. In practice, we suggest setting α = 1.

2.1 LOVÁSZ ROUND for SLB (Problem 2 with λ = 0)

In this section, we investigate the problem of SLB. Existing hardness result in [15] is o(
√
n/ log n),

which is independent of m and implicitly assumes that m = Θ(
√
n/ log n). However, the applica-

tions for SLB are often dependent on m, which is often chosen as m � n. We offer the hardness
analysis in terms of m in the following Theorem.
Theorem 2.2. For any ε > 0, SLB cannot be approximated to a factor of (1 − ε)m for any
m = o(

√
n/ log n) with polynomial number of queries even under the homogeneous setting.

For the rest of the paper, we assume m = o(
√
n/ log n) for SLB, unless stated otherwise.

Theorem 2.2 implies that SLB is hard to approximate better than m. However, arbitrary partition
π ∈ Π already achieves the best approximation factor of m that one can hope for under the
homogeneous setting, since maxi f(Aπi ) ≤ f(V ) ≤

∑
i f(Aπ

′

i ) ≤ mmaxi f(Aπ
′

i ) for any π′ ∈ Π.

LOVÁSZ ROUND: Therefore we consider only the heterogeneous setting for
SLB, for which we propose a tight algorithm – LOVÁSZ ROUND (see Alg. 2).

Algorithm 2: LOVÁSZ ROUND

1: Input: {fi}mi=1, {f̃i}mi=1, m, V .
2: Solve for {x∗i }mi=1 via convex relaxation.
3: Rounding: Let A1 =, . . . ,= Am = ∅.
4: for j = 1, . . . , n do
5: î ∈ argmaxi x

∗
i (j); Aî = Aî ∪ j

6: end for
7: Output {Ai}mi=1.

The algorithm proceeds as follows: (1) apply the
Lovász extension of submodular functions to relax
SLB to a convex programming, which is exactly
solved for a fractional solution (Line 2); (2) map
the fractional solution to a partition using the
θ-rounding technique as proposed in [9] (Line 3 - 6).
The Lovász extension, which naturally connects a
submodular function f with its convex relaxation f̃ ,
is defined as follows: given any x ∈ [0, 1]n, we obtain a permutation σx by ordering its elements in
non-increasing order, and thereby a chain of sets Sσx0 ⊂, . . . ,⊂ Sσxn with Sσxj = {σx(1), . . . , σx(j)}
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for j = 1, . . . , n. The Lovász extension f̃ for f is the weighted sum of the ordered entries of x:
f̃(x) =

∑n
j=1 x(σx(j))(f(Sσxj ) − f(Sσxj−1)). Given the convexity of the f̃i’s , SLB is relaxed to

the following convex program:

min
x1,...,xm∈[0,1]n

max
i
f̃i(xi), s.t

m∑
i=1

xi(j) ≥ 1, for j = 1, . . . , n (1)

Denoting the optimal solution for Eqn 1 as {x∗1, . . . , x∗m}, the θ-rounding step simply maps each item
j ∈ V to a block î such that î ∈ argmini x

∗
i (j) . We obtain the bound for LOVÁSZ ROUND as follows:

Theorem 2.3. LOVÁSZROUND achieves a worst-case approximation factor m.

We remark that, to the best of our knowledge, LOVÁSZROUND is the first algorithm that is tight and
that gives an approximation in terms of m for the heterogeneous setting.

3 General Submodular Partitioning (Problems 1 and 2 when 0 < λ < 1)

Lastly we study Problem 1 and Problem 2, in the most general case, i.e., 0 < λ < 1. We use the
proposed algorithms for SFA (Problem 1 with λ = 0) and SLB (Problem 2 with λ = 1) as the
building blocks to design algorithms for the general scenarios (0 < λ < 1). We first generalize the
proposed GREEDSAT leading to GENERALGREEDSAT for Problem 1. For Problem 2 we generalize
LOVÁSZ ROUND to obtain a Lovász extension based algorithm.

Almost the same as GREEDSAT we define an intermediate objective: F̄ cλ(π) =
1
m

∑m
i=1 min{λ̄fi(Aπi ) + λ 1

m

∑m
j=1 fj(A

π
j ), c} in GENERALGREEDSAT. Following the same algo-

rithmic design as in GREEDSAT, GENERALGREEDSAT only differs from GREEDSAT in Line 6, where
the submodular welfare is defined on the intermediate objective F̄ cλ(π). Let α be the guarantee for solv-
ing submodular welfare, GENERALGREEDSAT approximates Problem 1 with the following bounds:

Theorem 3.1. Given ε, α, and 0 ≤ λ ≤ 1, GENERALGREEDSAT finds a partition π̂ that
satisfies the following: λ̄mini fi(A

π̂
i ) + λ 1

m

∑m
i=1 fi(A

π̂
i ) ≥ λα(OPT − ε) where OPT =

maxπ∈Π λ̄mini fi(A
π
i )+λ 1

m

∑m
i=1 fi(A

π
i ). Moreover, let Fλ,i(π) = λ̄fi(A

π
i )+λ 1

m

∑m
j=1 fj(A

π
j ).

Given any 0 < δ < α, there is a set I ⊆ {1, . . . ,m} such that |I| ≥ dm(α − δ)e and
Fi,λ(π̂) ≥ max{ δ

1−α+δ , λα}(OPT − ε),∀i ∈ I .

Theorem 3.1 generalizes Theorem 2.1 when λ = 0, i.e., it recovers the bi-criterion guarantee in
Theorem 2.1 for the worst-case scenario (λ = 0). Moreover Theorem 3.1 implies that the factor
of α for the average-case objective can almost be recovered by GENERALGREEDSAT if λ = 1. It
also gives an improved guarantee as λ increases suggesting that Problem 1 becomes easier as the
mixed objective weights more on the average-case objective. We also point out that the optimality
guarantee of GENERALGREEDSAT smoothly interpolates the two extreme cases in terms of λ.

Next we focus on Problem 2 for general λ. We generalize LOVÁSZ ROUND leading to GENER-
ALLOVÁSZ ROUND. Almost the same as LOVÁSZ ROUND, GENERALLOVÁSZ ROUND only differs
in Line 2, where Problem 2 is relaxed as the following convex program:

min
x1,...,xm∈[0,1]n

λ̄max
i
f̃i(xi) + λ

1

m

m∑
j=1

f̃j(xj), s.t
m∑
i=1

xi(j) ≥ 1, for j = 1, . . . , n (2)

After solving for the fractional solution {x∗i }mi=1 to the convex programming, GENERALLOVÁSZ
ROUND then rounds it to a partition using the same rounding technique as LOVÁSZ ROUND. The
following Theorem holds:

Theorem 3.2. GENERALLOVÁSZ ROUND is guaranteed to find a partition π̂ ∈ Π such that
maxi λ̄fi(A

π̂
i ) + λ 1

m

∑m
j=1 fj(A

π̂
j ) ≤ mminπ∈Π maxi λ̄fi(A

π
i ) + λ 1

m

∑m
j=1 fj(A

π
j ).

Theorem 3.2 generalizes Theorem 2.3 when λ = 0. Moreover we achieve a factor of m by GENER-
ALLOVÁSZ ROUND for any λ. Though the approximation guarantee is independent of λ the algorithm
naturally exploits the trade-off between the worst-case and average-case objectives in terms of λ.

4



References
[1] A. Asadpour and A. Saberi. An approximation algorithm for max-min fair allocation of indivisible goods.

In SICOMP, 2010.
[2] C. Chekuri and A. Ene. Approximation algorithms for submodular multiway partition. In FOCS, 2011.
[3] C. Chekuri and A. Ene. Submodular cost allocation problem and applications. In Automata, Languages

and Programming, pages 354–366. Springer, 2011.
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