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Abstract

We discuss greedy and approximate greedy selection rules within Kaczmarz al-
gorithms for solving linear systems. We show that in some applications the costs
of greedy and randomized rules are similar, and that greedy selection gives faster
convergence rates. Further, we give a multi-step analysis of a particular greedy
rule showing it can be much faster when many rows are orthogonal.

1 Kaczmarz method

Solving large linear systems is a fundamental problem in machine learning. Applications range
from least-squares problems to Gaussian processes to graph-based semi-supervised learning. The
Kaczmarz method was originally proposed by Polish mathematician Stefan Kaczmarz [1] and later
re-invented by Gordon et. al. [2] under the name algebraic reconstruction technique (ART). At each
iteration, the Kaczmarz method uses a selection rule to choose some row of the matrix and projects
the current iterate onto the corresponding hyperplane. Classically, the two categories of selection
rules are cyclic and random, but randomized selection is typically used due to its superior empirical
performance. Recently, Strohmer and Vershynin [3] proved a non-asymptotic linear convergence
rate (in expectation) when rows are sampled proportional to their squared row norms. This work
spurred numerous extensions and generalizations of the randomized Kaczmarz method [4, 5, 6, 7, 8].
In this work we consider greedy selection rules. In particular, we consider two greedy rules and show
that they can be computed exactly and efficiently for sufficiently sparse matrices A. Subsequently,
in Section 3 we give faster convergence rates for both greedy rules, which clarify the relationship of
these rules to random selection and show that greedy methods will typically have better convergence
rates than randomized selection. In Section 4, we present convergence rates for approximations to
the greedy rules, as in the greedy hybrid method of Eldar and Needell [9]. We further give a non-
trivial multi-step bound for one of the rules (Section 5), which we believe is the first multi-step
analysis of any Kaczmarz algorithm.

2 Problems of interest, greedy rules and efficient calculations

We consider a linear system of equations, Ax = b, whereA is anm×nmatrix and b ∈ IRm. We as-
sume the system is consistent (a solution x∗ exists). We denote the rows of A by aT1 , . . . , a

T
m, where

each ai ∈ Rn, and use b = (b1, . . . , bm)> where each bi ∈ IR. Applications in machine learning
that involve solving linear systems include: least-squares, least-squares support vector machines,
Gaussian processes, fitting the final layer of a neural network using the squared-error, graph-based
semi-supervised learning and other graph-Laplacian problems [10], and finding the optimal config-
uration in Gaussian Markov random fields [11].

The Kaczmarz algorithm begins from an initial guess x0, and each iteration k chooses a row ik and
projects the current iterate xk onto the hyperplane defined by aTikx

k = bik . This gives the iteration

xk+1 = xk +
bik − aTikx

k

‖aik‖2
aik , (1)

and the algorithm converges under weak conditions (e.g., each i is visited infinitely often).

1



We consider two greedy selection rules: the maximum residual (MR) rule and the maximum distance
(MD) rule, respectively:

ik = argmax
i

|aTi xk − bi| (MR), ik = argmax
i

∣∣aTi xk − bi∣∣ /‖ai‖ (MD).

In general, computing these greedy selection rules exactly is too computationally expensive, but in
many applications we can compute them efficiently. For example, consider a sparse A with at most
c non-zeroes per column and at most r non-zeroes per row. To compute the MR rule in this setting,
we can use a max-heap structure. Initializing this structure requires O(m) time (with x0 = 0),
computing the MR rule requires O(1) time given the structure, and updating the structure costs
O(cr logm): we need to update at most cr numbers in the heap, each at a cost of O(log(m)). Thus,
if c and r are sufficiently small, the MR rule is not much more expensive than random selection.

The reason the MR rule is efficient for sparse A is that projecting onto row i does not change the
residual of row j if ai and aj do not share a non-zero index. However, projecting onto row i will
not change the residual of row j under the more general condition that ai and aj are orthogonal.
Consider a graph on m nodes, where we place an edge between nodes i and j if ai is not orthogonal
to aj . We call this the orthogonality graph. Given this graph, after we update a row i we only need
to update the neighbours of node i in this graph. Even if A is dense, if the maximum number of
neighbours is g, then computing the greedy rules costs O(gn + g log(m)). If g is small, this could
still be comparable to the O(n+ log(m)) cost of using existing randomized selection strategies.

3 Analyzing selection rules

In this section, we give single-step convergence rates for a variety of rules. Due to space restrictions,
all proofs are relegated to the extended version of the paper. First, consider the Kaczmarz method
with uniform (U) random selection. We can show that this selection strategy yields

E[‖xk+1 − x∗‖2] ≤
(
1− σ(A)2/m‖A‖2∞,2

)
‖xk − x∗‖2, (2)

where ‖A‖2∞,2 := maxi{‖ai‖2}. When A has independent columns, σ(A) is the nth singular value
of A. Otherwise, σ(A) is the smallest non-zero singular value of A [5].

Next, consider non-uniform (NU) random selection, where i is selected non-uniformly with proba-
bility ‖ai‖2/‖A‖2F (where ‖ · ‖F is the Frobenius norm). Strohmer and Vershynin [3] showed

E[‖xk+1 − x∗‖2] ≤
(

1− σ(A)2/‖A‖2F
)
‖xk − x∗‖2, (3)

which is at least as fast as (2), since ‖A‖2F ≤ m‖A‖2∞,2.

For the greedy MR selection rule, we can show a rate of

‖xk+1 − x∗‖2 ≤
(

1− κ(A)/‖A‖2∞,2

)
‖xk − x∗‖2, where σ(A)2/m ≤ κ(A) ≤ σ(A)2. (4)

At one extreme the MR rule obtains the same rate as (2) for U selection, while at the other extreme,
the MR rule could be up to m times faster than U selection. In contrast, the MR rate may be faster
or slower than the NU rate, as ‖A‖∞,2 ≤ ‖A‖F ≤

√
m‖A‖∞,2. Hence, these quantities and the

relationship between σ(A) and κ(A) influence which method is faster.

We can derive a tighter bound for U by absorbing the row norms of A into a row weighting matrix
D, where D = diag(‖a1‖, ‖a2‖, . . . , ‖am‖). Using this, we obtain

E[‖xk+1 − x∗‖2] ≤
(
1− σ(D−1A)2/m

)
‖xk − x∗‖2. (5)

A similar result is presented in [12] that includes a relaxation parameter. This rate is tighter than
(2), since σi(A)/‖A‖∞,2 ≤ σi(D

−1A) for all i [13]. Further, this rate can be faster than the NU
sampling rate of Strohmer and Vershynin [3]. For example, suppose row i is orthogonal to all other
rows but has a significantly larger row norm than all other row norms, i.e., ‖ai‖ >> ‖aj‖ ∀j 6= i. In
this case, NU selection will repeatedly select row i (even though it only needs to be selected once),
whereas U selection will only select it on each iteration with probability 1/m.
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For one iteration of the Kaczmarz method, the optimal rule in terms of ‖xk − x∗‖ is in fact the MD
rule, and we can show that this achieves

‖xk+1 − x∗‖2 ≤ (1− κ̄(A)) ‖xk − x∗‖2, (6)

where κ̄(A) satisfies max
{
σ(D−1A)2/m, σ(A)2/‖A‖2F , κ(A)/‖A‖2∞,2

}
≤ κ̄(A) ≤ σ(D−1A)2.

Thus, the MD rule is at least as fast as the fastest among (3), (4) and (5). This new rate is not only
simpler but is strictly tighter than the rate reported by Eldar and Needell [9] for the exact MD rule.

4 Approximate greedy rules

In many applications, only approximate greedy rules will be feasible. If we consider an MD rule
with a multiplicative error, ∣∣aTikxk − bik ∣∣

‖aik‖
≥ (1− ε̄k) max

i

∣∣aTi xk − bi∣∣
‖ai‖

,

for some ε̄k ∈ [0, 1), then we obtain

‖xk+1 − x∗‖2 ≤
(

1− (1− ε̄k)2κ̄(A)

)
‖xk − x∗‖2.

A similar bound is achieved by the MR rule, and we note that this does not require the error to
converge to 0. If we instead have an additive error ,∣∣∣∣∣aTikxk − bik‖aik‖

∣∣∣∣∣
2

≥ max
i

{∣∣∣∣aTi xk − bi‖ai‖

∣∣∣∣2
}
− ε̄k,

for some ε̄k ≥ 0, then we obtain
‖xk+1 − x∗‖2 ≤

(
1− κ̄(A)

)
‖xk − x∗‖2 + ε̄k.

With an additive error, ε̄k must to go to 0 in order for the algorithm to converge (though we can
avoid this with the hybrid method of Eldar and Needell [9]); but if it does goes to 0 fast enough, we
obtain the same rate as if we were calculating the exact greedy rule. In any case, this strategy can be
substantially faster when far from the solution.

5 Multi-step maximum residual bound

A simple modification of the analysis for the MR rule leads to the rate

‖xk+1 − x∗‖2 ≤
(

1− κ(A)/‖aik‖2
)
‖xk − x∗‖2. (7)

This bound depends on the specific ‖aik‖ corresponding to the ik selected at each iteration k. It is
strictly faster than (4) whenever ‖aik‖ < ‖A‖∞,2, but in the worst case we might have ‖aik‖ =
‖A‖∞,2. In this section, we give a tighter bound that holds across the iterations that depends on
the sequence of ik values that are chosen. We call this a multi-step analysis, as it contrasts with all
existing analyses of Kaczmarz methods, which consider convergence rates that depend on the choice
of ik at each iteration (or a cycle of ik values), but do not consider that the sequence of ik could give
a better bound than we obtain using the sequence of bounds.

Using a non-trivial proof, we show how the structure of the orthogonality graph (as presented in
Section 2) can be used to derive a worst-case bound on the sequence of ‖aik‖ values that appear in
our tighter analysis of the MR rule (7). In particular, we show that the MR rule achieves

‖xk − x∗‖2 ≤ O(1)

max
S(G)

|S(G)|

√√√√ ∏
j∈S(G)

(
1− κ(A)

‖aj‖2

)
k

‖x0 − x∗‖2,

where the maximum is taken over the geometric means of all the star subgraphs S(G) of the or-
thogonality graph with at least two nodes (these are the connected subgraphs that have a diameter
of 1 or 2). The implication of this result is that if the values of ‖ai‖ that are close to ‖A‖∞,2 are all
more than two edges away from each other in the orthogonality graph, then the MR rule converges
substantially faster than the worst-case MR bound (4) indicates.
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Figure 1: Comparison of Kaczmarz selection rules for both iteration and runtime.

6 Numerical experiments

In our experiments we focus on comparing the effectiveness of different rules on very sparse prob-
lems where our max-heap strategy allows us to efficiently compute the exact greedy rules. The
first problem we consider solving is an overdetermined linear system with a very sparse A of size
2500× 1000. We generate each row of A independently such that there are log(m)/(2m) non-zero
entries per row drawn from a uniform distribution between 0 and 1. To explore the effect of wildly-
different row norms, we randomly multiply one out of every 11 rows by a factor of 10,000. The
second problem we consider is a label propagation problem for semi-supervised learning in the ‘two
moons’ dataset [15]. From this dataset, we generate 2000 samples and randomly label 100 points.
We then connect each node to its 5 nearest neighbours. We use a variant of the quadratic labelling
criterion of Bengio et. al. [10], minyi|i 6∈S

1
2

∑
i

∑
j wij(yi − yj)2, where y is our label vector and

S is the set of labels that we do know while wij ≥ 0 are the weights assigned to each yi describing
how strongly we want the label yi and yj to be similar. We can express this quadratic problem as a
very sparse linear system, and hence apply Kaczmarz methods.

In Figure 1 we compare the average squared error against the iteration number and the runtime for
the 4 previously presented rules, as well as cyclic (C) and random permutation (RP - where the cycle
order is permuted after each pass through the rows) rules. In both cases, the MR rule is equal to or
significantly better than all other rules in terms of both the number of iterations and the runtime. In
contrast, the MD rule was effective than all other existing rules on the label-propagation dataset, but
was less effective on the over-determined linear system. This seems paradoxical because we show
that the MD rule is the optimal. However, this optimality only applies if we perform a single iteration
of the method, and only applies to the distance to the solution. We tried plotting the distance to the
solution on this problem and the MD rule does indeed perform better than the other methods. But if
we are interested in the squared residual, the MR method seems to be a better choice.

7 Discussion

In this work, we have proven faster convergence rate bounds for a variety of row-selection rules
in the context of Kaczmarz methods for solving linear systems. If the matrix A is extremely low
rank, an alternative to Kaczmarz methods are randomized low-rank matrix approximations [16].
However, real datasets are often not extremely low-rank while our methods are still applicable in
these cases. While we have focused on the case of non-accelerated and single-variable variants of
the Kaczmarz algorithm, we expect that all of our conclusions also hold for accelerated Kaczmarz
and block Kaczmarz methods [17, 7, 8, 18, 19].
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Mathématiques et Naturelles. Série A, Sciences Mathématiques, 35:355–357, 1937.
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