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Abstract

Recent works have highlighted scale invariance or symmetry present in the weight
space of a typical deep network and the adverse effect it has on the Euclidean
gradient based stochastic gradient descent optimization. In this work, we show
that a commonly used deep network, which uses convolution, batch normalization,
reLU, max-pooling, and sub-sampling pipeline, possess more complex forms of
symmetry arising from scaling-based reparameterization of the network weights.
We propose to tackle the issue of the weight space symmetry by constraining the
filters to lie on the unit-norm manifold. Consequently, training the network boils
down to using stochastic gradient descent updates on the unit-norm manifold. Our
empirical evidence based on the MNIST dataset shows that the proposed updates
improve the test performance beyond what is achieved with batch normalization
and without sacrificing the computational efficiency of the weight updates.

1 Introduction

Stochastic gradient descent (SGD) has been the workhorse for optimization of deep networks [1].
The most well-known form uses the Euclidean gradients with a varying learning rate to optimize
the weights. In this regard, the recent work [2] has brought to light scale invariance properties in
the weight space which commonly used deep networks possess. These symmetries or invariance
to reparameterizations of the weights imply that even though the loss function remains unchanged,
the Euclidean gradient varies based on the chosen parameterization. Consequently, optimization
trajectories can vary significantly for different reparameterizations [2].

Although these issues have been raised recently, the precursor to these methods is the early work of
Amari [3], who proposed the use of natural gradients to tackle weight space symmetries in neural
networks. The idea is to compute the steepest descent direction on the manifold defined by these
symmetries and use this direction to update the weights [4, 5, 6, 7]. Most of theses proposals are
either computationally expensive to implement or they need modifications to the architecture. On
the other hand, optimization over a manifold with symmetries or invariances has been a topic of
much research and provides guidance to other simpler metric constructions [8, 9, 10, 11, 12, 13, 14].

Our analysis into a commonly used network shows that there exists more complex forms of symme-
tries which can affect optimization, and hence there is a need to define weight updates that resolve
these symmetries. Accordingly, we look at one particular way of resolving the symmetries by con-
straining the filters to lie on the unit-norm manifold. This results from a geometric viewpoint on the
manifold search space. The proposed updates, shown later in Table 1, are symmetry-invariant and
are numerically efficient to implement. The updates are implemented in Matlab and Manopt [15].
The codes are available at http://bamdevmishra.com/codes/deepnetworks.
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Figure 1: ArchBN: a two layer deep architecture for classification with batch normalization [17].

2 Architecture and symmetry analysis

A two layer deep architecture, ArchBN, is shown in Figure 1. Each layer in ArchBN has typical
components commonly found in convolutional neural networks [16] such as multiplication with a
trainable weight matrix (W1,W2), a batch normalization layer (b1, b2) [17], element-wise rectifica-
tion ReLU, 2× 1 max-pooling with stride 2, and sub-sampling. The final layer is a K-way soft-max
classifier θ. The network is trained with a cross-entropy loss. The rows of the weight matrices W1

and W2 correspond to filters in layers 1 and 2, respectively. The dimension of each row corresponds
to the input dimension of the layer. For the MNIST digits dataset, the input is a 784 dimensional
vector. With 64 filters in each of the layers, the dimensionality of W1 is 64 × 784 and of W2 is
32× 64. The dimension of θ is 10× 32, where each row corresponds to a trainable class vector.

The batch normalization [17] layer normalizes each feature (element) in the h1 and h2 layers to
have zero-mean unit variance over each mini-batch. Then a separate and trainable scale and shift
is applied to the resulting features to obtain b1 and b2, respectively. This effectively models the
distribution of the features in h1 and h2 as Gaussian whose mean and variance are learnt during
training. Empirical results show this significantly improves convergence and our experiments also
support this claim [17]. A key observation is that the normalization of h1 and h2 allows for complex
symmetries to exist in the network. To this end, consider the reparameterizations

W̃1 = αW1 and W̃2 = βW2, (1)

where α = Diag(α1, α2, α3, α4, α5, α6, α7, α8) and β = Diag(β1, β2, β3, β4, β5, β6, β7, β8) and
the elements of α and β can be any real number. Diag(·) is an operator which creates a diagonal
matrix with its argument placed along the diagonal. Due to batch normalization which makes h1 and
h2 unit-variance, y is unchanged, and hence the loss is invariant to reparameterizations (1) of the
weights. Equivalently, there exists continuous symmetries or reparameterizations of W1 and W2,
which leave the loss function unchanged. It should be stressed that our analysis differs from [2],
where the authors deal with a simpler case of α = α0, β = 1/α0, and α0 is a non-zero scalar.

Unfortunately, the Euclidean gradient of the weights (used in standard SGD) is not invariant to repa-
rameterizations of the weights [2]. Consequently, optimization trajectories can vary significantly
based on the chosen parameterizations. This issue can be resolved either by defining a suitable non-
Euclidean gradient which is invariant to reparameterizations (1) or by placing appropriate constraints
on the filter weights as we show in the following section.

3 Resolving symmetry issues using manifold optimization

An efficient way to resolve the symmetries that exist in ArchBN is to constrain the weight vectors
(filters) in W1 and W2 to lie on the oblique manifold [8, 15], i.e., each filter in the fully connected
layers is constrained to have unit norm (abbreviated UN). Equivalently, we impose the constraints
diag(W1W

T
1 ) = 1 and diag(W2W

T
2 ) = 1, where diag(·) is an operator which extracts the diagonal
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Table 1: The proposed UN symmetry-invariant updates for a loss function L(W1,W2, θ) in ArchBN. Here
(W t
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t) is the current weight, (W t+1
1 ,W t+1

2 , θt+1) is the updated weight, λ is the learning rate, and
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t), and ∇θL(W t
1 ,W

t
2 , θ

t) are the partial derivatives of the loss L
with respect to W1, W2, and θ, respectively at (W t

1 ,W
t
2 , θ

t). The operator Orth(·) normalizes the rows of
the input argument. ΠW (·) is the linear projection operation that projects an arbitrary matrix onto the tangent
space of the oblique manifold at an element W . It is defined as ΠW (Z) = Z −Diag(diag((ZWT ))W [15].

elements of the argument matrix. To this end, consider a weight vector w ∈ Rn with the constraint
wTw = 1. (For example, wT is a row of W1.) The steepest descent direction for a loss `(w) with
w on the unit-norm manifold is computed ∇̃`(w) = ∇`(w) − (wT∇`(w))w, where ∇`(w) is the
Euclidean gradient and ∇̃`(w) is the Riemannian gradient on the unit-norm manifold [8, Chapter 3].
Effectively, the normal component of the Euclidean gradient, i.e., (wT∇`(w))w, is subtracted to
result in the tangential (to the unit-norm manifold) component. Following the tangential direction
takes the update out of the manifold, which is then pulled back to the manifold with a retraction
operation [8, Example 4.1.1]. Finally, an update of w on the unit-norm manifold is of the form

∇̃`(w) = ∇`(w)− (wT∇`(w))w
w̃+ = w − λ∇̃`(w)
w+ = w̃+/‖w̃+‖,

(2)

where w is the current weight, w+ is the updated weight, ∇`(w) is the Euclidean gradient, and λ is
the learning rate. It should be noted that when W1 and W2 are constrained, θ is unconstrained.

The proposed weight update (2) can be used in a stochastic gradient descent (SGD) setting, which
we use in our experiments in the following section. It should be emphasized that the proposed
updates are numerically efficient to implement. The formulas are shown in Table 1. The convergence
analysis of SGD on manifolds follows the developments in [1, 18].

4 Experiments and results

We train both two and four layer deep ArchBN to perform digit classification on the MNIST dataset
(60K training and 10K testing images). We use 64 features per layer. The digit images are rasterized
into a 784 dimensional vector as input to the network(s). No input pre-processing is performed. The
weights in each layer are drawn from a standard Gaussian and each filter is unit-normalized. The
class vectors are also drawn from a standard Gaussian and unit-normalized.

We use SGD-based optimization and choose the base learning rate from the set 10−p for p ∈
{2, 3, 4, 5} for each training run. For finding the base learning rate, we create a validation set of
500 images from the training set. We then train the network with a fixed learning rate using a
randomly chosen set of 1000 images for 50 epochs. At the start of each epoch, the training set is
randomly permuted and mini-batches are sampled in a sequence ensuring each training sample is
used only once within an epoch. We record the validation error measured as the error per training
sample for each candidate base learning rate. We then choose the candidate rate which corresponds
to the lowest validation error and use this for training the network on the full training set. We repeat
this whole process for 10 training runs for each network to measure the mean and variance of the
test error. We ignore the runs where the validation error diverged. For each full dataset training run,
we use the bold-driver protocol [19] to anneal the learning rate. We choose 50000 randomly chosen
samples as the training set and the remaining 10000 samples for validation. We train for a minimum
of 25 epochs and a maximum of 60 epochs. Training is terminated if either the training error is
less than 10−5 or the validation error increases with respect to the one measured before 5 epochs or
successive validation error measurements differ less than 10−5.
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Depth B-SGD UN
2 0.0206± 0.0024 0.0199± 0.0046
4 0.0204± 0.0027 0.0179± 0.0025

Table 2: The test error after the last training epoch measured over 10 runs on the MNIST dataset. The proposed
UN update shows a competitive performance while resolving the symmetries.
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Ground 
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Figure 2: SGD with the proposed UN weight updates, shown in Table 1, for training SegNet [21]. The quality
of the predictions as compared to the ground truth indicates a successful training of SegNet.

From Table 2 we see that for both two and four layer deep networks, the mean test error is lower for
UN as compared to balanced SGD (B-SGD) which is simply the Euclidean update, but where the
starting values of filters and class vectors are unit-normalized. The lowest mean and variance in the
test error is obtained with UN weight updates on a four layer deep network. The difference between
B-SGD and UN updates is more significant for the four layer deep network, thereby highlighting
the performance improvement over standard batch normalization in deeper networks. The proposed
UN weight updates can also be seen as a way to regularize the weights during training without
introducing any hyper-parameters, e.g., a weight decay term. It should also be stressed that the
performance difference between the two and four layer networks is not very large. This raises the
question for future research as to whether some deep networks necessarily have to be that deep or it
can be made shallower (and efficient) by better optimization [20].

5 Application to image segmentation

We apply SGD with the proposed UN weight updates in Table 1 for training SegNet, a deep convolu-
tional network proposed for road scene image segmentation into multiple classes [21]. This network,
although convolutional, possesses the same symmetries as those analyzed for ArchBN in (1). The
network is trained for 100 epochs on the CamVid [22] training set of 367 images. The predictions
on some sample test images from CamVid are shown in Figure 2. These qualitative results indicate
the usefulness of symmetry-invariant weight updates for larger networks that arise in practice.

6 Conclusion

We have highlighted the symmetries that exist in the weight space of currently popular deep neural
network architectures. These symmetries can be absorbed into gradient descent by applying a unit-
norm constraint on the filter weights. This takes into account the manifold structure on which the
weights of the network reside. The empirical results show that the test performance can be improved
using our proposed weight updates on a modern architecture. As a future research direction, we
would like to explore other efficient symmetry-invariant weight updates and exploit them for deep
convolutional neural network used in practical applications.
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