
HAMSI: Distributed Incremental Optimization
Algorithm Using Quadratic Approximations for

Partially Separable Problems

Umut Şimşekli1, Hazal Koptagel2, Figen Öztoprak3, Ş. İlker Birbil4, Ali Taylan Cemgil2
1: LTCI, CNRS, Télécom ParisTech, Université Paris-Saclay, 75013, Paris, France

2: Dept. of Computer Engineering, Boğaziçi University, 34342, Bebek, İstanbul, Turkey
3: Dept. of Industrial Engineering, Bilgi University, İstanbul, Turkey

4: Faculty of Engineering and Natural Sciences, Sabancı University, İstanbul, Turkey

Abstract

We present HAMSI, a provably convergent incremental algorithm for solving
large-scale partially separable optimization problems that frequently emerge in
machine learning and inferential statistics. The algorithm is based on a local
quadratic approximation and hence allows incorporating a second order curvature
information to speed-up the convergence. Furthermore, HAMSI needs almost no
tuning, and it is scalable as well as easily parallelizable. In large-scale simulation
studies with the MovieLens datasets, we illustrate that the method is superior to a
state-of-the-art distributed stochastic gradient descent method in terms of conver-
gence behavior. This performance gain comes at the expense of using memory that
scales only linearly with the total size of the optimization variables. We conclude
that HAMSI may be considered as a viable alternative in many scenarios, where
first order methods based on variants of stochastic gradient descent are applicable.

1 Introduction

We present a distributed incremental method for solving problems of the form

min
x
f(x) ≡ min

x∈R|J |

∑
i∈I

fi(x), (1)

where each component function fi for i ∈ I of the overall objective function f are twice contin-
uously differentiable functions and I ≡ {1, 2, . . . , |I|} is an index set with typically a very large
cardinality |I|. Additionally, in many applications, each fi depends only on a subset of the elements
of x; that is, fi(x) = fi(xαi

). Then, the objective function in (1) is called partially separable. Here
αi are index sets such that for all i ∈ I, αi ⊆ J ≡ {1, 2, . . . , |J |}. Then, each singleton j ∈ J
corresponds to a unique component of x, denoted as xj . Thus, when α = {j1, j2, . . . , jA}, we have
a vector xα = (xj1 , xj1 , . . . , xjA). This notation allows us to rewrite our overall problem as

min
x∈R|J |

∑
i∈I

fi(xαi). (2)

The rather generic form given by (2) covers various optimization problems arising in machine learn-
ing, data mining or inferential statistics. A simple example clarifies the notation.

Example 1.1 Consider the following matrix factorization problem:

min
x

∥∥∥∥∥
(
y1 y2
y3 y4
y5 y6

)
−
(
x1
x2
x3

)
(x4 x5)

∥∥∥∥∥
2

F

1

where ‖ · ‖F is the Frobenius norm. Then using our notation, the objective function becomes∑
i∈I

fi(xαi
) = (y1 − x1x4)2 + (y2 − x1x5)2 + · · ·+ (y6 − x3x5)2,

where I = {1, 2, . . . , 6} and J = {1, 2, . . . , 5} with the subsets α1 = {1, 4}, α2 = {1, 5},
α3 = {2, 4}, α4 = {2, 5}, α5 = {3, 4}, and α6 = {3, 5}.

In this paper, our aim is to come up with a distributed and parallel algorithm. To serve this pur-
pose, we further define a two level partitioning of the component functions. Formally, we let
I =

⋃K
k=1

⋃Bk

b=1 Sk,b , where Sk,b ∩ Sk,b′ = ∅ for all k and b 6= b′. Hence, (1) is written as

min
x∈R|J |

K∑
k=1

Bk∑
b=1

∑
i∈Sk,b

fi(xαi). (3)

Our distributed algorithm relies on the fact that the objective function in (3) is separable over the
second summation indexed by the block index b. This important point becomes clear, if we define

αk,b ≡
⋃

i∈Sk,b

αi for all k = 1, . . . ,K; b = 1, . . . , Bk,

with αk,b ∩αk,b′ = ∅ for b 6= b′ and
⋃Bk

b=1 αk,b ⊆ J for all k = 1, . . . ,K. Then, we have

fk,b(xαk,b
) =

∑
i∈Sk,b

fi(xαi). (4)

This construction leads to the final form of our optimization problem that we shall consider in the
subsequent part of our discussion:

min
x∈R|J |

K∑
k=1

Bk∑
b=1

fk,b(xαk,b
). (5)

The problem (5) is generally hard to solve because all or some of the terms in the objective function
are non-convex. Due to lack of convexity, we can at best hope finding a local minimum to this
problem. Still, several standard unconstrained optimization methods like gradient descent can be
employed to obtain a local solution. However, in many applications, the cardinalities of the index
sets I and J are very large, that makes even evaluating the objective function very costly.

In such settings (random) incremental and incremental aggregated methods can be used as the ob-
jective function is the sum of a finite number of functions [1, 2, 3, 4, 5]. In this study, we present
an incremental and parallel algorithm that incorporates (approximate) curvature information for dis-
tributed large-scale optimization. Our experiences have confirmed that using second order informa-
tion can help fast convergence even with incremental gradients. To gather second order information,
the inner problems of our algorithm are modeled by quadratic functions. Similar to incremental
and aggregate methods, our algorithm exploits the structure of the objective function and evaluates
the gradient only for a subset of the component functions at each iteration, and it chooses the sub-
sets of component functions in a way that provides separability of the inner problems. This helps
to distribute the computations over a cluster of computers and enables doing step computations on
subdomains in parallel.

The idea of second order incremental methods has been investigated before. Bertsekas proposed
a method specifically designed for the least squares problem [6]. An extension of this method for
general functions has recently been proposed by Gürbüzbalaban et al. [7]. They have shown linear
convergence for the method under strong convexity and gradient growth assumptions. Moreover,
their method requires the computation and inversion of exact Hessian matrices of component func-
tions. In another study [8], an incremental aggregated quasi-Newton algorithm has been proposed,
where the main idea is to update the quadratic model of one component function at each iteration.

2 Proposed Algorithm

The proposed algorithm uses incremental gradients and incorporates a second order information into
the optimization steps. This second order information comes from an approximation to the Hessian

2

Algorithm 1: HAMSI (Hessian Approximated Multiple Subsets Iteration)

1 input: η, γ, x(1)
2 t← 1
3 repeat
4 Update β(t)

5 z(t,1) ← x(t)

6 H(t) ← An approximate Hessian matrix at x(t)
7 for k = 1, 2, · · · ,K do
8 for b = 1, 2, . . . Bk do in parallel
9 z

(t,k)
αk,b ← arg minzQ(z; z

(t,k)
αk,b ,∇fk,b(z(t,k)αk,b), [H(t)]αk,b

, β(t))

10 z(t,k+1) ← z(t,k)

11 x(t+1) ← z(t,K+1)

12 t← t+ 1
13 until convergence or t > max_epochs

of the objective function. As we also work on multiple subsets of |I| functions, the algorithm is
aptly called Hessian Approximated Multiple Subsets Iteration (HAMSI).

The key idea of the algorithm is using a local convex quadratic approximation

Q(z; x̄, g,H, β) ≡ (z − x̄)>g +
1

2
(z − x̄)>H(z − x̄) +

1

2
β‖z − x̄‖2 (6)

for step computation. Here, g is an incremental gradient, H is (an approximation to) the Hessian
of the objective function. The parameter β is crucial not only to bound the step length but also to
control the oscillation of the incremental steps.

Algorithm 1 gives the generic form of HAMSI. We denote the kth inner iterate of the tth outer
iteration with z(t,k), and x(t) are the outer iterates. It is important to note that the inner loop in
Algorithm 1 (lines 8-9) computes the blocks of each inner step in parallel. The algorithm passes
through the subsets of component functions in a cyclic manner. Once a cycle is complete, one outer
iteration is finished and the outer iterate is updated (line 11). Note that the same (approximate)
matrixH(t) is employed at all inner iterations during the tth cycle. However, the inner iterations use
different blocks of H(t) denoted by the submatrix [H(t)]αk,b

, where [H]α = {H(i, i′) : i, i′ ∈ α}.
β(t) is also constant during the inner iterations and it is updated with each outer iteration (line 4).

Above description of the algorithm overlooks several important implementation details; in particular,
how to construct the quadratic approximation and how to solve the corresponding subproblems. The
curious reader is referred to the longer version of this paper [9], in which we provide a convergence
proof for HAMSI under the quite generic setting given in Algorithm 1. In [9], we also provide
an example implementation of HAMSI where the approximate Hessian matrices H(t) are obtained
using BFGS quasi-Newton update formula. In particular, the compact form of limited memory
BFGS (L-BFGS) [10] is used in inner iterations to form the quadratic models, and to obtain their
analytical solutions directly. L-BFGS allows the computation of (H(t) + β(t)I)−1v for a given
vector v without forming any |J | × |J | matrices, and without any O(|J |2) operations.

3 Application on Distributed Matrix Factorization

In this section, we present the performance of HAMSI on a large-scale, distributed matrix factoriza-
tion (MF) application. The aim of a MF model is to decompose an observed data matrix Y ∈ RI×J
in the form: Y ≈ X1X2, where X1 ∈ RI×P and X2 ∈ RP×J are the factor matrices, known
typically as the dictionary and the weight matrix, respectively. A typical example with quadratic
error is given as follows:

(X1, X2)? = arg min ‖Y −X1X2‖2F . (7)

The relation to problem (1) becomes clear as we set |I| = IJ , |J | = IP + JP , x ≡
[vec(X1)>, vec(X2)>]>.

3

Subset 1 Subset 2 Subset 3

Y X1 X2 Y X1 X2 Y X1 X2

⇡ ⇡ ⇡
X11

X12

X13

X23X22X21 X11

X12

X13

X23X22X21 X11

X12

X13

X23X22X21Y11 Y12 Y13

Y23Y22 Y21

Y31 Y32Y33
Node 3

Node 2

Node 1

(a) Illustration of the subsets and the blocks. Given the blocks in a subset, the corresponding blocks in X1 and
X2 become conditionally independent, as illustrated in different textures.

Wall-Clock Time (sec)
0 100 200 300 400

R
M

S
E

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
DSGD
HAMSI

(b) MovieLens 1M, K = 8

Wall-Clock Time (sec)
0 500 1000 1500

R
M

S
E

2

3

4

5

6

7

8

9

10
DSGD
HAMSI

(c) MovieLens 10M, K = 15

Wall-Clock Time (sec)
0 500 1000 1500

R
M

S
E

2

3

4

5

6

7

8

9

10
DSGD
HAMSI

(d) MovieLens 20M, K = 60

Figure 1: (a) Partitioning schema (b)-(d) RMSE values on MovieLens datasets.

Figure 1(a) illustrates the partitioning schema that we use in our implementation. This idea of
partitioning has already been studied previously in the literature [11, 12, 13]. In this example, the
observed matrix Y is partitioned intoK = 3 disjoint subsets, where each subset is further partitioned
into B1 = B2 = B3 = 3 blocks. The latent factors X1 and X2 are partitioned accordingly into 3
blocks each.

We have implemented HAMSI in C using OpenMPI. In our implementation, each subset has
the same number of blocks Bk = K, where K is also the number of available nodes. We
evaluate HAMSI on three large movie ratings datasets, namely MovieLens 1M, 10M, and 20M
(grouplens.org), where these datasets contain 1, 10, and 20 million ratings, respectively. In
all our experiments, we set latent dimension, P = 50 and L-BFGS memory size, M = 5. Further
details about the experimental setup can be found in [9].

We compare HAMSI with the state-of-the-art distributed optimization algorithm for MF, namely,
the distributed stochastic gradient descent (DSGD) [12]. In this experiment, on each dataset, we
report the root mean squared error (RMSE) between Y and X1X2 after running each algorithm
for a fixed computation time. Figures 1(b)-1(d) shows the RMSE values of HAMSI and DSGD on
the three datasets as function of wall-clock time. A single iteration of HAMSI is computationally
heavier than DSGD: First, the compact form L-BFGS update requires more computation than simple
gradient evaluation. Formally, this overhead is in the order of O((M2 max(I, J)P)/K2). Second,
the communication cost of HAMSI isO(JP (2M+1)/K) per iteration, whereas the communication
cost of DSGD is O(JP/K). However, the use of second order information compensates quickly
for this slight increase in computational complexity as it helps HAMSI converge much faster than
DSGD. This is clearly seen by the significant gap in RMSE values between the two methods.

4 Conclusion

We have presented HAMSI, a provably convergent distributed incremental quasi-Newton algorithm
for unconstrained optimization. HAMSI is particularly suited for large-scale optimization problems
where the overall objective function can be written as the sum of a large number of component
functions, and each component function depends only on a subset of the optimization variables. Such
structured non-separable problems are ubiquitous in machine learning; besides matrix factorization
problems, maximum a-posteriori state estimation in certain exponential family graphical models
have also this form. The algorithm is scalable as neither the exact gradient nor an approximate
Hessian matrix of the original objective is explicitly required and is easily parallelizable on modern
distributed computing infrastructures. Our main conclusion is that HAMSI may be considered as
a viable alternative in many scenarios where first order methods based on variants of stochastic
gradient descent are applicable.

4

grouplens.org

References

[1] Dimitri P Bertsekas, “Incremental gradient, subgradient, and proximal methods for convex
optimization: A survey,” Optimization for Machine Learning, vol. 2010, pp. 1–38, 2011.

[2] Paul Tseng, “An incremental gradient (-projection) method with momentum term and adaptive
stepsize rule,” SIAM Journal on Optimization, vol. 8, no. 2, pp. 506–531, 1998.

[3] Mikhail V Solodov, “Incremental gradient algorithms with stepsizes bounded away from zero,”
Computational Optimization and Applications, vol. 11, no. 1, pp. 23–35, 1998.

[4] Doron Blatt, Alfred O Hero, and Hillel Gauchman, “A convergent incremental gradient method
with a constant step size,” SIAM Journal on Optimization, vol. 18, no. 1, pp. 29–51, 2007.

[5] Nicolas L Roux, Mark Schmidt, and Francis R Bach, “A stochastic gradient method with
an exponential convergence _rate for finite training sets,” in Advances in Neural Information
Processing Systems, 2012, pp. 2663–2671.

[6] Dimitri P Bertsekas, “Incremental least squares methods and the extended Kalman filter,”
SIAM Journal on Optimization, vol. 6, no. 3, pp. 807–822, 1996.

[7] Mert Gürbüzbalaban, Asuman Ozdaglar, and Pablo Parrilo, “A globally convergent incremen-
tal Newton method,” arXiv preprint arXiv:1410.5284, 2014.

[8] Jascha Sohl-Dickstein, Ben Poole, and Surya Ganguli, “Fast large-scale optimization by uni-
fying stochastic gradient and quasi-Newton methods,” in Proceedings of the 31th International
Conference on Machine Learning (ICML), 2014, pp. 604–612.

[9] Umut Şimşekli, Hazal Koptagel, Figen Öztoprak, Ş İlker Birbil, and Ali Taylan Cemgil,
“Hamsi: Distributed incremental optimization algorithm using quadratic approximations for
partially separable problems,” arXiv preprint arXiv:1509.01698, 2015.

[10] Richard H Byrd, Jorge Nocedal, and Robert B Schnabel, “Representations of quasi-Newton
matrices and their use in limited memory methods,” Mathematical Programming, vol. 63, no.
1-3, pp. 129–156, 1994.

[11] Chao Liu, Hung chih Yang, Jinliang Fan, Li-Wei He, and Yi-Min Wang, “Distributed nonneg-
ative matrix factorization for web-scale dyadic data analysis on mapreduce,” in Proceedings
of the 19th International World Wide Web Conference, April 2010.

[12] Rainer Gemulla, Erik Nijkamp, Peter J. Haas, and Yannis Sismanis, “Large-scale matrix fac-
torization with distributed stochastic gradient descent,” in ACM SIGKDD, 2011.

[13] Benjamin Recht and Christopher Ré, “Parallel stochastic gradient algorithms for large-scale
matrix completion,” Mathematical Programming Computation, vol. 5, no. 2, pp. 201–226,
2013.

5

	Introduction
	Proposed Algorithm
	Application on Distributed Matrix Factorization
	Conclusion

